User talk:ColorfulGalaxy's CA discoveries
This page has been marked as the official page for CA discussions on the Esolang wiki.
I got hacked and banned
I got hacked and banned on LifeWiki and the forums by a deleted user. They changed my LifeWiki password without letting the administrators know. And someone else began to spread rumors about me. ColorfulGalaxy's CA discoveries (talk) 13:45, 13 November 2024 (UTC)
Edit: The password was changed back.
Please put ColorfulGalaxy's new rules on LifeWiki. ColorfulGalaxy's CA discoveries (talk) 06:46, 14 November 2024 (UTC)
Please help me. ColorfulGalaxy's CA discoveries (talk) 07:52, 15 November 2024 (UTC)
- okay can you stop, we get it that you got hackedUser:Gaham (Discord:belarusianflag)
Please also add the "Rules" page to your bookmark list. Please put ColorfulGalaxy's new rules on LifeWiki. Thanks. ColorfulGalaxy's CA discoveries (talk) 12:54, 15 November 2024 (UTC)
My life viewer patterns stopped working
Somehow, the LifeViewer patterns starting with "x rule =" have stopped working. Please ask the LifeViewer team to fix this bug. Thanks. ColorfulGalaxy's CA discoveries (talk) 06:02, 16 November 2024 (UTC)
- This is not a bug. User:ZCX islptng
- I am not able to edit my posts as my forum account has been hacked. I'm sorry. ColorfulGalaxy's CA discoveries (talk) 15:16, 16 November 2024 (UTC)
- LifeWiki soups stopped working as well. ColorfulGalaxy's CA discoveries (talk) 15:18, 16 November 2024 (UTC)
- ColorfulGalaxy and ColorfulGabrielsp138 are normally not able to edit my posts. ColorfulGalaxy also got unfortunately hacked on the forum, and he reported that he couldn't use his LifeWiki account. ColorfulGalaxy's CA discoveries (talk) 15:40, 16 November 2024 (UTC)
- A user called "hotcrystal0", who claimed to be Chinese but was actually in America, also noticed this bug. ColorfulGalaxy's CA discoveries (talk) 00:39, 17 November 2024 (UTC)
stop spaming
不要再我的talk page里面spam元胞自动机的东西!!!
这里是esolang维基,不是LifeWiki!!!!!
-谁发的我就不说了,反正不是PSTF或None1
- agreed. Also sign your postsUser:Gaham (Discord:belarusianflag)
Some CA stuff
Here's an orthogonoid i never posted due to being inactive right before finishing the pattern. It was supposed to be a follow-up post to my last post on FWKnightship's thread (and perhaps a thread and a suggestion for inclusion with Golly since the rule is then notable, being the first Generations rule to have an orthogonoid):
#C 34c/21672 orthogonoid, credits to cvojan for the pseudo-orthogonoid x = 273, y = 6353, rule = 1c2-an3-ijqr4-inrwy5cejkr6cen78/2-ac3ikr4-iktwy5acejq6-i78/3 142$113.3A$113.2AB512$115.A$114.ABA$114.B.B9$114.3A$114.A.A5$114.3A$ 114.A.A6$115.A$114.ABA$114.B.B12$115.A$114.ABA$114.B.B13$114.3A$114.A .A5$114.3A$114.A.A8$115.A$114.ABA$114.B.B12$115.A$114.ABA$114.B.B23$ 114.3A$114.A.A5$114.3A$114.A.A5$115.A$114.ABA$114.B.B10$114.3A$114.A. A13.A$131.2A$131.2A6$146.2A$114.3A29.2A$114.A.A8$89.2A32.2A$89.2A6.A. A23.2A6.A.A$93.B4.A33.A$91.A.B3.A.A3.2A11.A.A12.A.A16.A.A$91.AB2A9.A 12.A33.A$93.B9.2A11.A.A31.A.A$97.3A$97.A.A8$97.3A$97.A.A14.A.A$114.3A 4$97.3A$97.A.A4$114.A.A$114.3A3$98.A$97.ABA$97.B.B5$114.B.B$114.ABA$ 115.A5$98.A15.A.A$97.ABA14.3A$97.B.B4$114.A.A$114.3A12$97.3A$97.A.A5$ 97.3A$97.A.A4$114.B.B$114.ABA$98.A16.A$97.ABA$97.B.B6$98.A$97.ABA$97. B.B2$114.B.B$114.ABA$115.A$98.A$97.ABA$97.B.B5$97.3A14.A.A$97.A.A14. 3A5$114.A.A$114.3A$97.3A$97.A.A9$98.A$97.ABA$97.B.B14.B.B$114.ABA$ 115.A2$98.A$97.ABA$97.B.B5$98.A$97.ABA$97.B.B$114.B.B$114.ABA$115.A6$ 114.A.A$97.3A14.3A$97.A.A4$114.A.A$97.3A14.3A$97.A.A6$98.A$97.ABA$97. B.B14.B.B$114.ABA$115.A10$98.A$97.ABA$97.B.B27$97.3A$97.A.A5$97.3A$ 97.A.A8$98.A$97.ABA$97.B.B7$98.A$97.ABA$97.B.B6$98.A$97.ABA$97.B.B29$ 97.3A$97.A.A10$97.3A$97.A.A16$97.3A$97.A.A6$97.3A$97.A.A26$97.3A$97.A .A8$97.3A$97.A.A6$97.3A$97.A.A5$97.3A$97.A.A22$97.3A$97.A.A17$97.3A$ 97.A.A10$98.A$97.ABA$97.B.B5$97.3A$97.A.A8$98.A$97.ABA$97.B.B8$97.3A$ 97.A.A21$97.3A$97.A.A10$97.3A$97.A.A16$97.3A$97.A.A6$97.3A$97.A.A26$ 97.3A$97.A.A8$97.3A$97.A.A6$97.3A$97.A.A5$97.3A$97.A.A22$97.3A$97.A.A 13$97.3A$97.A.A10$98.A$97.ABA$97.B.B6$97.3A$97.A.A9$97.3A$97.A.A7$97. 3A$97.A.A8$97.3A$97.A.A21$97.3A$97.A.A5$97.3A$97.A.A6$98.A$97.ABA$97. B.B12$98.A$97.ABA$97.B.B60$97.3A$97.A.A5$97.3A$97.A.A9$97.3A$97.A.A 12$97.3A$97.A.A8$98.A$97.ABA$97.B.B6$97.3A$97.A.A9$97.3A$97.A.A321$ 97.3A$97.A.A5$98.A$97.ABA$97.B.B6$97.3A$97.A.A9$97.3A$97.A.A7$97.3A$ 97.A.A8$97.3A$97.A.A15$97.3A$97.A.A5$97.3A$97.A.A8$98.A$97.ABA$97.B.B 12$98.A$97.ABA$97.B.B53$97.3A$97.A.A5$97.3A$97.A.A8$98.A$97.ABA$97.B. B12$98.A$97.ABA$97.B.B23$97.3A$97.A.A5$97.3A$97.A.A5$98.A$97.ABA$97.B .B10$97.3A$97.A.A9$97.3A$97.A.A21$97.3A$97.A.A5$97.3A$97.A.A8$97.3A$ 97.A.A5$97.3A$97.A.A8$98.A$97.ABA$97.B.B12$98.A$97.ABA$97.B.B17$97.3A $97.A.A5$97.3A$97.A.A6$98.A$97.ABA$97.B.B6$98.A$97.ABA$97.B.B5$98.A$ 97.ABA$97.B.B5$97.3A$97.A.A7$97.3A$97.A.A9$98.A$97.ABA$97.B.B4$98.A$ 97.ABA$97.B.B5$98.A$97.ABA$97.B.B12$97.3A$97.A.A10$98.A$97.ABA$97.B.B 6$97.3A$97.A.A9$97.3A$97.A.A7$97.3A$97.A.A8$97.3A$97.A.A10$97.3A$97.A .A5$97.3A$97.A.A6$98.A$97.ABA$97.B.B12$98.A$97.ABA$97.B.B6$98.A$97.AB A$97.B.B4$98.A$97.ABA$97.B.B11$97.3A$97.A.A25$114.B.B$114.ABA$115.A5$ 97.3A$97.A.A14.A.A$114.3A5$97.3A14.A.A$97.A.A14.3A10$97.3A$97.A.A27$ 97.3A$97.A.A8$97.3A$97.A.A10$97.3A$97.A.A4$98.A$97.ABA$97.B.B10$97.3A $97.A.A$114.B.B$114.ABA$115.A2$97.3A$97.A.A5$114.B.B$114.ABA$115.A2$ 97.3A$97.A.A3$114.A.A$114.3A8$97.3A14.B.B$97.A.A14.ABA$115.A7$98.A$ 97.ABA$97.B.B2$114.B.B$114.ABA$115.A2$97.3A$97.A.A5$114.B.B$114.ABA$ 115.A2$97.3A$97.A.A$114.B.B$114.ABA$115.A30$114.B.B$114.ABA$115.A7$ 114.B.B$114.ABA$115.A6$114.B.B$114.ABA$115.A8$114.B.B$114.ABA$115.A6$ 114.A.A$114.3A10$114.B.B$114.ABA$115.A14$97.3A$97.A.A5$98.A$97.ABA$ 97.B.B$114.A.A$114.3A4$97.3A$97.A.A3$114.A.A$114.3A5$97.3A$97.A.A$ 114.A.A$114.3A5$97.3A$97.A.A3$114.A.A$114.3A4$97.3A$97.A.A$114.B.B$ 114.ABA$115.A10$114.A.A$114.3A$97.3A$97.A.A5$97.3A$97.A.A4$114.B.B$ 114.ABA$115.A2$98.A$97.ABA$97.B.B$114.B.B$114.ABA$115.A4$114.B.B$114. ABA$115.A3$98.A$97.ABA$97.B.B4$114.A.A$114.3A7$114.A.A$114.3A5$114.B. B$114.ABA$115.A5$114.B.B$114.ABA$115.A6$114.B.B$114.ABA$115.A6$114.A. A$114.3A5$114.A.A$97.3A14.3A$97.A.A5$97.3A$97.A.A9$97.3A$97.A.A14.B.B $114.ABA$115.A10$97.3A$97.A.A$114.B.B$114.ABA$115.A5$98.A$97.ABA$97.B .B$114.A.A$114.3A4$97.3A$97.A.A14.A.A$114.3A8$97.3A14.A.A$97.A.A14.3A 5$114.A.A$114.3A21$114.A.A$114.3A9$114.A.A$114.3A10$114.B.B$114.ABA$ 115.A5$114.A.A$114.3A5$114.A.A$114.3A23$114.B.B$114.ABA$115.A12$114.B .B$114.ABA$115.A8$114.A.A$114.3A5$114.A.A$114.3A18$114.B.B$114.ABA$ 115.A12$114.B.B$114.ABA$115.A6$114.A.A$114.3A5$114.A.A$114.3A18$114.B .B$114.ABA$115.A7$114.B.B$114.ABA$115.A6$114.B.B$114.ABA$115.A8$114.B .B$114.ABA$115.A6$114.A.A$114.3A5$114.B.B$114.ABA$115.A166$114.A.A$ 114.3A8$114.B.B$114.ABA$115.A8$114.A.A$114.3A5$114.B.B$114.ABA$115.A 10$114.A.A$114.3A14$114.B.B$114.ABA$115.A7$114.B.B$114.ABA$115.A6$ 114.B.B$114.ABA$115.A8$114.B.B$114.ABA$115.A10$114.A.A$114.3A5$114.A. A$114.3A6$114.A.A$114.3A5$114.B.B$114.ABA$115.A4$114.A.A$114.3A9$114. A.A$114.3A10$114.A.A$114.3A5$114.B.B$114.ABA$115.A21$114.B.B$114.ABA$ 115.A4$114.A.A$114.3A10$114.A.A$114.3A8$114.A.A$114.3A20$114.A.A$114. 3A6$114.A.A$114.3A5$114.A.A$114.3A5$114.B.B$114.ABA$115.A9$114.A.A$ 114.3A8$114.B.B$114.ABA$115.A8$114.A.A$114.3A5$114.B.B$114.ABA$115.A 10$114.A.A$114.3A102$114.A.A$114.3A11$114.B.B$114.ABA$115.A9$114.B.B$ 114.ABA$115.A8$114.B.B$114.ABA$115.A5$114.A.A$114.3A5$114.A.A$114.3A 5$114.A.A$114.3A4$114.B.B$114.ABA$115.A33$114.A.A$114.3A13$114.B.B$ 114.ABA$115.A5$114.B.B$114.ABA$115.A12$114.B.B$114.ABA$115.A8$114.A.A $114.3A5$114.A.A$114.3A63$114.B.B$114.ABA$115.A7$114.B.B$114.ABA$115. A6$114.B.B$114.ABA$115.A8$114.B.B$114.ABA$115.A6$114.A.A$114.3A5$114. B.B$114.ABA$115.A91$114.A.A$114.3A7$114.A.A$114.3A8$114.A.A$114.3A8$ 114.B.B$114.ABA$115.A4$114.B.B$114.ABA$115.A9$114.A.A$114.3A8$114.A.A $114.3A7$114.A.A$114.3A9$114.A.A$114.3A9$114.A.A$114.3A6$114.A.A$114. 3A7$114.B.B$114.ABA$115.A5$114.A.A$114.3A45$114.A.A$114.3A21$114.A.A$ 114.3A11$114.B.B$114.ABA$115.A4$114.B.B$114.ABA$115.A23$114.A.A$114. 3A7$114.A.A$114.3A8$114.A.A$114.3A8$114.B.B$114.ABA$115.A4$114.B.B$ 114.ABA$115.A10$114.A.A$114.3A11$114.A.A$114.3A7$114.A.A$114.3A9$114. A.A$114.3A14$114.A.A$114.3A6$114.A.A$114.3A9$114.A.A$114.3A9$114.A.A$ 114.3A11$114.B.B$114.ABA$115.A10$114.A.A$114.3A14$114.A.A$114.3A23$ 114.B.B$114.ABA$115.A12$114.B.B$114.ABA$115.A8$114.A.A$114.3A5$114.A. A$114.3A9$114.A.A$114.3A8$114.A.A$114.3A7$114.A.A$114.3A9$114.A.A$ 114.3A10$114.B.B$114.ABA$115.A5$114.A.A$114.3A8$114.A.A$114.3A32$114. B.B$114.ABA$115.A8$114.A.A$114.3A5$114.B.B$114.ABA$115.A10$114.A.A$ 114.3A20$114.B.B$114.ABA$115.A5$114.B.B$114.ABA$115.A4$114.B.B$114.AB A$115.A9$114.A.A$114.3A7$114.A.A$114.3A5$114.B.B$114.ABA$115.A5$114.B .B$114.ABA$115.A6$114.B.B$114.ABA$115.A6$114.A.A$114.3A5$114.A.A$114. 3A17$114.B.B$114.ABA$115.A12$114.B.B$114.ABA$115.A8$114.A.A$114.3A5$ 114.A.A$114.3A8$114.A.A$114.3A5$114.A.A$114.3A21$114.A.A$114.3A9$114. A.A$114.3A10$114.B.B$114.ABA$115.A5$114.A.A$114.3A5$114.A.A$114.3A23$ 114.B.B$114.ABA$115.A12$114.B.B$114.ABA$115.A8$114.A.A$114.3A5$114.A. A$114.3A9$114.A.A$114.3A8$114.A.A$114.3A7$114.A.A$114.3A9$114.A.A$ 114.3A7$114.A.A$114.3A6$114.A.A$114.3A10$114.B.B$114.ABA$115.A8$114.A .A$114.3A40$114.A.A$114.3A9$114.A.A$114.3A5$114.A.A$114.3A23$114.A.A$ 114.3A13$114.A.A$114.3A8$114.B.B$114.ABA$115.A4$114.B.B$114.ABA$115.A 14$114.B.B$114.ABA$115.A7$114.B.B$114.ABA$115.A6$114.B.B$114.ABA$115. A8$114.B.B$114.ABA$115.A6$114.A.A$114.3A5$114.B.B$114.ABA$115.A101$ 114.B.B$114.ABA$115.A8$114.B.B$114.ABA$115.A4$114.B.B$114.ABA$115.A9$ 114.A.A$114.3A8$114.A.A$114.3A7$114.A.A$114.3A9$114.A.A$114.3A10$114. B.B$114.ABA$115.A8$114.A.A$114.3A12$114.A.A$114.3A9$114.A.A$114.3A5$ 114.A.A$114.3A18$114.B.B$114.ABA$115.A19$114.B.B$114.ABA$115.A12$114. B.B$114.ABA$115.A8$114.A.A$114.3A5$114.A.A$114.3A10$114.A.A$114.3A8$ 114.A.A$114.3A7$114.A.A$114.3A9$114.A.A$114.3A9$114.B.B$114.ABA$115.A 5$114.A.A$114.3A9$114.A.A$114.3A5$114.B.B$114.ABA$115.A8$114.A.A$114. 3A5$114.B.B$114.ABA$115.A10$114.A.A$114.3A13$114.B.B$114.ABA$115.A5$ 114.B.B$114.ABA$115.A4$114.B.B$114.ABA$115.A9$114.A.A$114.3A7$114.A.A $114.3A5$114.B.B$114.ABA$115.A5$114.B.B$114.ABA$115.A6$114.B.B$114.AB A$115.A6$114.A.A$114.3A5$114.A.A$114.3A17$114.B.B$114.ABA$115.A12$ 114.B.B$114.ABA$115.A8$114.A.A$114.3A5$114.A.A$114.3A8$114.A.A$114.3A 5$114.A.A$114.3A21$114.A.A$114.3A9$114.A.A$114.3A10$114.B.B$114.ABA$ 115.A5$114.A.A$114.3A5$114.A.A$114.3A23$114.B.B$114.ABA$115.A12$114.B .B$114.ABA$115.A8$114.A.A$114.3A5$114.A.A$114.3A9$114.A.A$114.3A8$ 114.A.A$114.3A7$114.A.A$114.3A9$114.A.A$114.3A7$114.A.A$114.3A6$114.A .A$114.3A10$114.B.B$114.ABA$115.A3$131.3A$131.A.A4$114.A.A$114.3A14. 3A$131.A.A6$132.A$131.ABA$131.B.B12$132.A$131.ABA$131.B.B8$131.3A$ 131.A.A5$132.A$131.ABA$131.B.B$114.A.A$114.3A8$131.3A$114.A.A14.A.A$ 114.3A5$114.A.A$114.3A$131.3A$131.A.A10$131.3A$131.A.A4$132.A$131.ABA $114.A.A14.B.B$114.3A7$131.3A$131.A.A5$114.A.A$114.3A4$131.3A$131.A.A 3$114.B.B$114.ABA$115.A4$114.B.B$114.ABA$115.A2$131.3A$131.A.A9$131. 3A$131.A.A$114.B.B$114.ABA$115.A4$131.3A$131.A.A2$114.B.B$114.ABA$ 115.A4$131.3A$131.A.A$114.B.B$114.ABA$115.A7$131.3A$114.B.B14.A.A$ 114.ABA$115.A3$132.A$131.ABA$131.B.B$114.A.A$114.3A4$131.3A$114.B.B 14.A.A$114.ABA$115.A7$131.3A$131.A.A7$131.3A$131.A.A8$131.3A$131.A.A 14$131.3A$131.A.A5$132.A$131.ABA$131.B.B9$131.3A$131.A.A9$131.3A$131. A.A2$114.B.B$114.ABA$115.A8$114.B.B$114.ABA$115.A15.3A$131.A.A3$114.B .B$114.ABA$115.A9$131.3A$114.A.A14.A.A$114.3A13$131.3A$131.A.A5$131. 3A$131.A.A3$114.B.B$114.ABA$115.A3$132.A$131.ABA$131.B.B7$114.B.B$ 114.ABA$115.A3$132.A$131.ABA$131.B.B3$114.A.A$114.3A5$114.A.A$114.3A 12$114.A.A$114.3A14.3A$131.A.A5$131.3A$131.A.A$114.A.A$114.3A3$132.A$ 131.ABA$131.B.B10$131.3A$131.A.A5$114.A.A$114.3A3$131.3A$131.A.A5$ 114.A.A$114.3A10$114.A.A$114.3A4$131.3A$131.A.A$114.A.A$114.3A3$131. 3A$131.A.A8$114.B.B14.3A$114.ABA14.A.A$115.A4$131.3A$131.A.A3$114.A.A $114.3A4$132.A$131.ABA$131.B.B6$114.A.A$114.3A5$132.A$131.ABA$131.B.B 2$114.A.A$114.3A5$114.A.A$114.3A8$131.3A$131.A.A2$114.B.B$114.ABA$ 115.A$131.3A$131.A.A3$114.B.B$114.ABA$115.A$132.A$131.ABA$131.B.B$ 114.B.B$114.ABA$115.A3$132.A$131.ABA$131.B.B4$114.A.A$99.A.A12.3A6.2A 4.BA2.A.A$100.A13.A.A7.A5.BA2.A$99.A.A12.A.A6.2A4.BA2.A.A$108.A6.A$ 106.2A6.A.A$106.2A2$131.B.B$131.ABA$132.A6$131.B.B$131.ABA$115.2A15.A $115.2A31.2A$148.2A$120.AB$119.AB$120.AB9.BA$131.3AB$131.A2.A$132.B.A $132.3A72$98.2A$98.A$98.AB!
And here's another orthogonoid in a rule called ICE (INT (universal) constructor emulator), which was designed to be the easiest rule to make orthogonoids in:
#C 18c/3830 orthogonoid x = 1961, y = 71, rule = ICE 10$1932.C2$1935.C2$18.D4.C$19.A$19.A$19.A$19.B$26.C$18.C5.AB.BA6.B3A. BA.BA.BA.BA.BA.BA.BA.BA3.BA3.B3A2.BA2.BA5.B2A.BA.BA.BA.BA6.B3A.BA.BA. BA.BA.BA8.B3A.BA.BA.BA.BA.BA.BA.BA.BA.BA2.BA.B2A2.BA.BA.BA.BA.BA.BA.B A.BA3.B2A.B2A.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA4.B3A .BA.BA.BA.BA.BA.BA.BA.BA.BA2.BA.B2A2.BA.BA7.BA2.BA2.BA2.BA3.B3A2.BA2. BA5.B2A.BA.BA.BA.BA6.B3A.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA4.B3A.BA.BA. BA.BA.BA.BA.BA.BA.BA2.BA.B2A2.BA.BA3.BA.BA.BA.BA.BA.BA4.B3A.BA.BA.BA. BA.BA.BA.BA.BA.BA2.BA.B2A2.BA.BA3.BA.BA.BA3.BA3.B3A2.BA2.BA5.B2A.BA.B A.BA.BA6.B3A.BA.BA.BA.BA.BA4.B3A.BA.BA.BA.BA.BA.BA.BA.BA.BA2.BA.B2A2. BA.BA3.BA2.BA2.BA2.BA2.BA2.BA2.BA2.BA2.BA5.B2A2.BA.BA.BA.BA.BA.BA5.B 3A.BA7.B3A3.BA.BA2.BA2.BA5.B3A.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA66. B2A3.BA3.B3A6.BA5.B2A.BA.BA.BA.BA6.B3A.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA. BA.BA.BA.BA3.BA3.B3A6.BA5.B2A.BA.BA.BA.BA6.B3A.BA.BA.BA.BA.BA.BA.BA.B A.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.B A.BA.BA.BA.BA3.BA3.B3A6.BA5.B2A.BA.BA.BA.BA6.B3A.BA.BA7.BA2.BA7.B3A.B A.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA2.BA.B2A2.BA.BA6.B3A.BA.BA.BA.BA.BA .BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA .BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA8.B2A.B2A.BA.BA.BA.BA.BA.BA .BA.BA.BA.BA.BA.BA.BA.BA.BA.BA.BA4.B3A.BA.BA.BA.BA.BA.BA.BA.BA.BA2.BA .B2A2.BA.BA7.BA2.BA2.BA2.BA3.B3A2.BA2.BA5.B2A.BA.BA.BA.BA6.B3A.BA.BA. BA.BA.BA.BA.BA.BA.BA.BA.BA4.B3A.BA.BA.BA.BA.BA.BA.BA.BA.BA2.BA.B2A2.B A.BA3.BA.BA.BA.BA.BA.BA4.B3A.BA.BA.BA.BA.BA.BA.BA.BA.BA2.BA.B2A2.BA.B A3.BA.BA.BA3.BA3.B3A2.BA2.BA5.B2A.BA.BA.BA.BA6.B3A.BA.BA.BA.BA.BA4.B 3A.BA.BA.BA.BA.BA.BA.BA.BA.BA2.BA.B2A2.BA.BA8.B3A.BA.BA.BA.BA.BA.BA.B A.BA.BA.BA.BA.BA2.BA.B2A2.BA.BA.BA.BA.BA.BA.BA.BA4.C$26.A$15.D3.B6.B$ 1931.C.C$18.C.C5.A$26.B2$26.A1916.D$26.B1905.C$25.C.2AB5.AB2.AB2.3AB 3.AB3.AB.AB.AB.AB.AB.AB.AB.AB.3AB6.AB.AB.AB.AB.2AB5.AB2.AB2.3AB3.AB3. AB.AB.AB.AB.AB.AB.AB.AB.3AB6.AB.AB.AB.AB.2AB5.AB2.AB2.3AB3.AB3.AB.AB. AB.AB.AB.AB.AB.AB.3AB6.AB.AB.AB.AB.2AB5.AB2.AB2.3AB3.AB3.AB.AB.AB3.AB .AB2.2AB.AB2.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.3AB5.AB2.AB4.AB.AB. 2AB.AB10.AB.AB.AB.AB.AB.AB.AB.AB.AB.3AB6.AB.AB.AB.AB.AB.3AB6.AB.AB.AB .AB.2AB5.AB2.AB2.3AB3.AB3.AB.AB.AB.AB.AB.AB.AB.AB.3AB6.AB.AB.AB.AB.2A B5.AB2.AB2.3AB3.AB3.AB.AB.AB2.AB.AB.AB.AB.AB.3AB6.AB.AB.AB.AB.2AB5.AB 2.AB2.3AB3.AB3.AB.AB.AB2.AB.AB2.2AB.AB2.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB .AB.AB.3AB4.AB.AB.AB3.AB.AB2.2AB.AB2.AB.AB.AB.AB.AB.AB.AB.AB.AB.3AB6. AB.AB.AB.AB.AB.3AB6.AB.AB.AB.AB.2AB5.AB2.AB2.3AB3.AB3.AB.AB.AB.AB.AB. AB.AB.AB.3AB6.AB.AB.AB.AB.2AB5.AB2.AB2.3AB3.AB3.AB.AB.AB.AB.AB.AB.AB. AB.3AB6.AB.AB.AB.AB.2AB5.AB2.AB2.3AB3.AB3.AB.AB.AB.AB.AB.AB.AB.AB.AB. AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB. AB.AB.AB.AB.AB7.AB.AB2.2AB.AB2.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.3A B6.AB2.AB7.AB.AB3.2AB.AB2.AB.AB.AB.AB.AB.AB.AB.AB.AB.3AB6.AB.AB.AB.AB .AB.3AB6.AB.AB.AB.AB.2AB5.AB2.AB2.3AB3.AB3.AB.AB.AB.AB.AB.AB.AB.AB.3A B6.AB.AB.AB.AB.2AB5.AB2.AB2.3AB3.AB3.AB.AB.AB.AB.AB.AB.AB.AB.3AB6.AB. AB.AB.AB.2AB5.AB2.AB2.3AB3.AB3.AB.AB.AB.AB.AB.AB.AB.AB.3AB6.AB.AB.AB. AB.2AB5.AB2.AB2.3AB3.AB3.AB.AB.AB14.AB2.AB2.AB4.AB.AB2.2AB.AB2.AB.AB. AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.3AB6.AB11.AB.AB3.2AB.AB2.AB.AB.AB.AB.AB .AB.AB.AB.AB.3AB9.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.3AB6.AB.AB.AB.AB. 2AB5.AB2.AB2.3AB3.AB3.AB.AB.AB4.2AB57.AB.AB.AB.AB.AB.AB.AB.AB.AB.AB.A B.AB.3AB5.AB2.AB2.AB.AB3.3AB7.AB.3AB5.AB.AB.AB.AB.AB.AB$26.B2$25.C.C 6$1933.C3$1931.C.C!
The rule table of ICE:
@RULE ICE ICE stands for INT (universal) Constructor Emulator, this rule is very suitable for building INT-type constructions like orthogonoids. @TABLE n_states:5 neighborhood:Moore symmetries:rotate4reflect var a = {0,1,2,3,4} var b = a var c = b var d = c var e = d var f = e var g = f var h = g var i = h var j = {0,1,2} var k = j var l = k var x = {0,4} var z = {0,1} 3,0,0,3,0,2,0,3,3,3 0,3,0,0,0,4,0,0,0,3 3,3,a,b,c,d,e,f,g,0 4,3,0,0,4,0,0,0,0,0 0,3,0,1,0,3,0,0,0,3 3,1,1,0,4,0,0,0,0,3 0,1,2,0,0,0,4,0,1,3 1,1,0,0,4,0,0,0,0,4 4,0,4,0,0,0,4,0,0,0 4,2,4,0,0,0,0,0,0,0 0,0,1,4,1,0,0,0,0,1 0,2,0,0,0,4,0,0,0,1 4,3,0,0,0,3,0,2,0,0 0,0,1,0,4,0,0,0,0,3 3,a,4,b,c,d,e,f,g,0 4,a,3,b,3,d,e,f,g,0 0,1,0,0,4,0,0,0,0,1 0,1,0,4,0,0,0,0,0,1 0,4,1,0,0,0,0,0,0,3 4,1,2,0,0,0,0,0,0,0 0,1,2,0,x,0,0,0,2,1 0,3,0,0,0,0,2,1,2,3 0,2,0,3,0,1,0,0,0,4 0,3,4,0,0,0,0,0,0,4 3,4,2,0,0,0,0,0,0,0 4,3,0,2,0,0,0,0,0,0 3,2,1,0,0,0,0,0,0,0 z,0,3,0,0,1,0,0,0,1 0,0,0,3,0,1,0,0,0,1 0,3,0,0,0,0,0,2,1,3 3,1,2,0,0,0,0,0,0,0 0,1,3,0,0,0,0,0,0,0 1,j,0,0,k,1,3,0,0,1 1,j,0,1,0,k,0,3,0,1 0,j,0,1,0,k,0,3,0,1 0,0,k,1,3,0,0,j,0,1 0,1,0,0,k,j,k,0,0,1 1,1,0,0,j,1,j,0,0,1 1,1,0,0,j,0,j,0,0,1 1,b,c,d,e,f,g,h,i,2 3,b,c,d,e,f,g,h,i,3 4,b,c,d,e,f,g,h,i,4 0,2,2,2,0,0,0,0,0,2 0,2,2,0,2,0,0,0,0,2 0,2,2,0,0,2,0,0,0,2 0,2,2,0,0,0,2,0,0,2 0,2,2,0,0,0,0,2,0,2 0,2,2,0,0,0,0,0,2,2 0,2,0,2,0,2,0,0,0,2 0,2,0,2,0,0,2,0,0,2 0,2,0,0,2,0,2,0,0,2 0,0,2,0,2,0,2,0,0,2 2,2,2,0,0,0,0,0,0,2 2,2,0,2,0,0,0,0,0,2 2,2,0,0,2,0,0,0,0,2 2,2,0,0,0,2,0,0,0,2 2,0,2,0,2,0,0,0,0,2 2,0,2,0,0,0,2,0,0,2 2,2,2,2,0,0,0,0,0,2 2,2,2,0,2,0,0,0,0,2 2,2,2,0,0,2,0,0,0,2 2,2,2,0,0,0,2,0,0,2 2,2,2,0,0,0,0,2,0,2 2,2,2,0,0,0,0,0,2,2 2,2,0,2,0,2,0,0,0,2 2,2,0,2,0,0,2,0,0,2 2,2,0,0,2,0,2,0,0,2 2,0,2,0,2,0,2,0,0,2 a,b,c,d,e,f,g,h,i,0 @COLORS 1 255 255 255 2 160 160 160 3 192 255 255 4 255 255 0
There are also many minor stuff, including symmetric Crosslife censuses, some niche stdin censuses, catalysts(!) in Crosslife, which brings it one step closer to the life-like:
x = 109, y = 43, rule = R2,C0,S3-4,6,B0-7,N+ 2$21b3o2$21b2o3$2bob3o18$12bo$11bo5$33bo$5bo2bo$5b3obo25bo2b2o7bob2obo $6bo79bo$5bobo80bo2b2o4bob2obo!
and an experiment with a census producing objects so fast that i reached the leaderboard with a fairly weak computer in less than two weeks! What would happen if many people are searching it? I invite you all to join the experiment!
I didn't post these because i simply don't want to know what had happened since i left there, so please post all these to appropriate places in the forums and make threads for 1c2-an3-ijqr4-inrwy5cejkr6cen78/2-ac3ikr4-iktwy5acejq6-i78/3 (preferably under the name of orthogen) and ICE. Iddi01 (talk) 12:21, 17 November 2024 (UTC)
P24 oscillator
User:ColorfulGalaxy found a "p24" oscillator in his new rule.
#BEGIN x = 14, y = 35, rule = HybridRegionB3S23B3S2-i34q 14B$14B$14B$14B$14B$14B$14B$14B$14B$14B$14B$14B$5B3C6B$6BC7B$14B$14B$ 6B.7B$14B$14B$6B.7B$6B.7B$14B$14B$14B$14B$14B$14B$14B$14B$14B$14B$14B $14B$14B$14B! @RULE HybridRegionB3S23B3S2-i34q @TABLE n_states:4 neighborhood:Moore symmetries:rotate4reflect var o={1,3} var o1=o var o2=o var o3=o var o4=o var o5=o var o6=o var o7=o var o8=o var b={0,2} var b1=b var b2=b var b3=b var b4=b var b5=b var b6=b var b7=b var b8=b 0,o1,o2,o3,b4,b5,b6,b7,b8,1 # B3a 0,b1,o2,b3,o4,b5,o6,b7,b8,1 # B3c 0,o1,b2,o3,b4,o5,b6,b7,b8,1 # B3e 0,o1,o2,b3,b4,b5,b6,b7,o8,1 # B3i 0,o1,b2,o3,o4,b5,b6,b7,b8,1 # B3j 0,o1,b2,o3,b4,b5,o6,b7,b8,1 # B3k 0,o1,o2,b3,o4,b5,b6,b7,b8,1 # B3n 0,o1,o2,b3,b4,b5,o6,b7,b8,1 # B3q 0,o1,o2,b3,b4,o5,b6,b7,b8,1 # B3r 0,o1,b2,b3,o4,b5,o6,b7,b8,1 # B3y 1,b1,b2,b3,b4,b5,b6,b7,b8,0 # S0 1,o1,b2,b3,b4,b5,b6,b7,b8,0 # S1e 1,b1,o2,b3,b4,b5,b6,b7,b8,0 # S1c 1,o1,o2,o3,o4,b5,b6,b7,b8,0 # S4a 1,b1,o2,b3,o4,b5,o6,b7,o8,0 # S4c 1,o1,b2,o3,b4,o5,b6,o7,b8,0 # S4e 1,o1,o2,b3,o4,o5,b6,b7,b8,0 # S4i 1,o1,b2,o3,b4,o5,o6,b7,b8,0 # S4j 1,o1,b2,o3,o4,b5,o6,b7,b8,0 # S4k 1,o1,o2,b3,o4,b5,b6,b7,o8,0 # S4n 1,o1,o2,o3,b4,b5,o6,b7,b8,0 # S4q 1,o1,o2,o3,b4,o5,b6,b7,b8,0 # S4r 1,o1,o2,b3,b4,o5,b6,b7,o8,0 # S4t 1,o1,o2,b3,b4,b5,o6,o7,b8,0 # S4w 1,o1,o2,b3,o4,b5,o6,b7,b8,0 # S4y 1,o1,o2,b3,b4,o5,o6,b7,b8,0 # S4z 1,o1,o2,o3,o4,b5,b6,b7,o8,0 # S5a 1,o1,o2,o3,b4,o5,b6,o7,b8,0 # S5c 1,o1,o2,b3,o4,b5,o6,b7,o8,0 # S5e 1,o1,o2,o3,o4,o5,b6,b7,b8,0 # S5i 1,o1,o2,o3,o4,b5,o6,b7,b8,0 # S5j 1,o1,o2,b3,o4,b5,o6,o7,b8,0 # S5k 1,o1,o2,o3,o4,b5,b6,o7,b8,0 # S5n 1,o1,o2,o3,b4,o5,o6,b7,b8,0 # S5q 1,o1,o2,b3,o4,o5,o6,b7,b8,0 # S5r 1,o1,o2,b3,o4,o5,b6,o7,b8,0 # S5y 1,o1,o2,o3,o4,o5,o6,b7,b8,0 # S6a 1,o1,o2,o3,o4,o5,b6,o7,b8,0 # S6c 1,o1,o2,o3,o4,b5,o6,b7,o8,0 # S6e 1,o1,o2,b3,o4,o5,o6,b7,o8,0 # S6i 1,o1,o2,o3,o4,b5,o6,o7,b8,0 # S6k 1,o1,o2,o3,b4,o5,o6,o7,b8,0 # S6n 1,o1,o2,o3,o4,o5,o6,o7,b8,0 # S7c 1,o1,o2,o3,o4,o5,o6,b7,o8,0 # S7e 1,o1,o2,o3,o4,o5,o6,o7,o8,0 # S8 2,o1,o2,o3,b4,b5,b6,b7,b8,3 # B3a 2,b1,o2,b3,o4,b5,o6,b7,b8,3 # B3c 2,o1,b2,o3,b4,o5,b6,b7,b8,3 # B3e 2,o1,o2,b3,b4,b5,b6,b7,o8,3 # B3i 2,o1,b2,o3,o4,b5,b6,b7,b8,3 # B3j 2,o1,b2,o3,b4,b5,o6,b7,b8,3 # B3k 2,o1,o2,b3,o4,b5,b6,b7,b8,3 # B3n 2,o1,o2,b3,b4,b5,o6,b7,b8,3 # B3q 2,o1,o2,b3,b4,o5,b6,b7,b8,3 # B3r 2,o1,b2,b3,o4,b5,o6,b7,b8,3 # B3y 3,b1,b2,b3,b4,b5,b6,b7,b8,2 # S0 3,o1,b2,b3,b4,b5,b6,b7,b8,2 # S1e 3,b1,o2,b3,b4,b5,b6,b7,b8,2 # S1c 3,o1,b2,b3,b4,o5,b6,b7,b8,2 # S2i removed 3,o1,o2,o3,o4,b5,b6,b7,b8,2 # S4a 3,b1,o2,b3,o4,b5,o6,b7,o8,2 # S4c 3,o1,b2,o3,b4,o5,b6,o7,b8,2 # S4e 3,o1,o2,b3,o4,o5,b6,b7,b8,2 # S4i 3,o1,b2,o3,b4,o5,o6,b7,b8,2 # S4j 3,o1,b2,o3,o4,b5,o6,b7,b8,2 # S4k 3,o1,o2,b3,o4,b5,b6,b7,o8,2 # S4n ## 3,o1,o2,o3,b4,b5,o6,b7,b8,2 # S4q added 3,o1,o2,o3,b4,o5,b6,b7,b8,2 # S4r 3,o1,o2,b3,b4,o5,b6,b7,o8,2 # S4t 3,o1,o2,b3,b4,b5,o6,o7,b8,2 # S4w 3,o1,o2,b3,o4,b5,o6,b7,b8,2 # S4y 3,o1,o2,b3,b4,o5,o6,b7,b8,2 # S4z 3,o1,o2,o3,o4,b5,b6,b7,o8,2 # S5a 3,o1,o2,o3,b4,o5,b6,o7,b8,2 # S5c 3,o1,o2,b3,o4,b5,o6,b7,o8,2 # S5e 3,o1,o2,o3,o4,o5,b6,b7,b8,2 # S5i 3,o1,o2,o3,o4,b5,o6,b7,b8,2 # S5j 3,o1,o2,b3,o4,b5,o6,o7,b8,2 # S5k 3,o1,o2,o3,o4,b5,b6,o7,b8,2 # S5n 3,o1,o2,o3,b4,o5,o6,b7,b8,2 # S5q 3,o1,o2,b3,o4,o5,o6,b7,b8,2 # S5r 3,o1,o2,b3,o4,o5,b6,o7,b8,2 # S5y 3,o1,o2,o3,o4,o5,o6,b7,b8,2 # S6a 3,o1,o2,o3,o4,o5,b6,o7,b8,2 # S6c 3,o1,o2,o3,o4,b5,o6,b7,o8,2 # S6e 3,o1,o2,b3,o4,o5,o6,b7,o8,2 # S6i 3,o1,o2,o3,o4,b5,o6,o7,b8,2 # S6k 3,o1,o2,o3,b4,o5,o6,o7,b8,2 # S6n 3,o1,o2,o3,o4,o5,o6,o7,b8,2 # S7c 3,o1,o2,o3,o4,o5,o6,b7,o8,2 # S7e 3,o1,o2,o3,o4,o5,o6,o7,o8,2 # S8 @NAMES 0 LIFE OFF 1 LIFE ON 2 TLIFE OFF 3 TLIFE ON @COLORS 0 0 0 0 1 0 255 0 2 0 0 255 3 0 255 51 4 255 0 0 #END
Is it possible to shape the edge of the blue region so that it can convert a T-tetromino from "tlife" into a glider? ColorfulGalaxy's CA discoveries (talk) 08:35, 13 November 2024 (UTC)
Wire
ColorfulGalaxy found a wire while trying to find converters. The wire is at "2c/5" speed. ColorfulGalaxy's CA discoveries (talk) 08:56, 13 November 2024 (UTC)
#BEGIN x = 30, y = 40, rule = HybridRegionB3S23B3S2-i34q 30B$11B.18B$10B.B.17B$11B.18B$30B$11B.18B$10B.B.17B$11B.18B$30B$11B.18B $10B.B.17B$11B.18B$30B$11B.18B$10B.B.17B$11B.18B$30B$11B.18B$10B.B.17B $11B.18B$30B$11B.18B$10B.B.17B$11B.18B$30B$11B.18B$10B.B.17B$7BC22B$8B CB.B.17B$5B3C22B$5B3C3B.18B$10B.B.14B$27B$11B.15B$27B$19B$19B$19B$19B $19B! @RULE HybridRegionB3S23B3S2-i34q @TABLE n_states:4 neighborhood:Moore symmetries:rotate4reflect var o={1,3} var o1=o var o2=o var o3=o var o4=o var o5=o var o6=o var o7=o var o8=o var b={0,2} var b1=b var b2=b var b3=b var b4=b var b5=b var b6=b var b7=b var b8=b 0,o1,o2,o3,b4,b5,b6,b7,b8,1 # B3a 0,b1,o2,b3,o4,b5,o6,b7,b8,1 # B3c 0,o1,b2,o3,b4,o5,b6,b7,b8,1 # B3e 0,o1,o2,b3,b4,b5,b6,b7,o8,1 # B3i 0,o1,b2,o3,o4,b5,b6,b7,b8,1 # B3j 0,o1,b2,o3,b4,b5,o6,b7,b8,1 # B3k 0,o1,o2,b3,o4,b5,b6,b7,b8,1 # B3n 0,o1,o2,b3,b4,b5,o6,b7,b8,1 # B3q 0,o1,o2,b3,b4,o5,b6,b7,b8,1 # B3r 0,o1,b2,b3,o4,b5,o6,b7,b8,1 # B3y 1,b1,b2,b3,b4,b5,b6,b7,b8,0 # S0 1,o1,b2,b3,b4,b5,b6,b7,b8,0 # S1e 1,b1,o2,b3,b4,b5,b6,b7,b8,0 # S1c 1,o1,o2,o3,o4,b5,b6,b7,b8,0 # S4a 1,b1,o2,b3,o4,b5,o6,b7,o8,0 # S4c 1,o1,b2,o3,b4,o5,b6,o7,b8,0 # S4e 1,o1,o2,b3,o4,o5,b6,b7,b8,0 # S4i 1,o1,b2,o3,b4,o5,o6,b7,b8,0 # S4j 1,o1,b2,o3,o4,b5,o6,b7,b8,0 # S4k 1,o1,o2,b3,o4,b5,b6,b7,o8,0 # S4n 1,o1,o2,o3,b4,b5,o6,b7,b8,0 # S4q 1,o1,o2,o3,b4,o5,b6,b7,b8,0 # S4r 1,o1,o2,b3,b4,o5,b6,b7,o8,0 # S4t 1,o1,o2,b3,b4,b5,o6,o7,b8,0 # S4w 1,o1,o2,b3,o4,b5,o6,b7,b8,0 # S4y 1,o1,o2,b3,b4,o5,o6,b7,b8,0 # S4z 1,o1,o2,o3,o4,b5,b6,b7,o8,0 # S5a 1,o1,o2,o3,b4,o5,b6,o7,b8,0 # S5c 1,o1,o2,b3,o4,b5,o6,b7,o8,0 # S5e 1,o1,o2,o3,o4,o5,b6,b7,b8,0 # S5i 1,o1,o2,o3,o4,b5,o6,b7,b8,0 # S5j 1,o1,o2,b3,o4,b5,o6,o7,b8,0 # S5k 1,o1,o2,o3,o4,b5,b6,o7,b8,0 # S5n 1,o1,o2,o3,b4,o5,o6,b7,b8,0 # S5q 1,o1,o2,b3,o4,o5,o6,b7,b8,0 # S5r 1,o1,o2,b3,o4,o5,b6,o7,b8,0 # S5y 1,o1,o2,o3,o4,o5,o6,b7,b8,0 # S6a 1,o1,o2,o3,o4,o5,b6,o7,b8,0 # S6c 1,o1,o2,o3,o4,b5,o6,b7,o8,0 # S6e 1,o1,o2,b3,o4,o5,o6,b7,o8,0 # S6i 1,o1,o2,o3,o4,b5,o6,o7,b8,0 # S6k 1,o1,o2,o3,b4,o5,o6,o7,b8,0 # S6n 1,o1,o2,o3,o4,o5,o6,o7,b8,0 # S7c 1,o1,o2,o3,o4,o5,o6,b7,o8,0 # S7e 1,o1,o2,o3,o4,o5,o6,o7,o8,0 # S8 2,o1,o2,o3,b4,b5,b6,b7,b8,3 # B3a 2,b1,o2,b3,o4,b5,o6,b7,b8,3 # B3c 2,o1,b2,o3,b4,o5,b6,b7,b8,3 # B3e 2,o1,o2,b3,b4,b5,b6,b7,o8,3 # B3i 2,o1,b2,o3,o4,b5,b6,b7,b8,3 # B3j 2,o1,b2,o3,b4,b5,o6,b7,b8,3 # B3k 2,o1,o2,b3,o4,b5,b6,b7,b8,3 # B3n 2,o1,o2,b3,b4,b5,o6,b7,b8,3 # B3q 2,o1,o2,b3,b4,o5,b6,b7,b8,3 # B3r 2,o1,b2,b3,o4,b5,o6,b7,b8,3 # B3y 3,b1,b2,b3,b4,b5,b6,b7,b8,2 # S0 3,o1,b2,b3,b4,b5,b6,b7,b8,2 # S1e 3,b1,o2,b3,b4,b5,b6,b7,b8,2 # S1c 3,o1,b2,b3,b4,o5,b6,b7,b8,2 # S2i removed 3,o1,o2,o3,o4,b5,b6,b7,b8,2 # S4a 3,b1,o2,b3,o4,b5,o6,b7,o8,2 # S4c 3,o1,b2,o3,b4,o5,b6,o7,b8,2 # S4e 3,o1,o2,b3,o4,o5,b6,b7,b8,2 # S4i 3,o1,b2,o3,b4,o5,o6,b7,b8,2 # S4j 3,o1,b2,o3,o4,b5,o6,b7,b8,2 # S4k 3,o1,o2,b3,o4,b5,b6,b7,o8,2 # S4n ## 3,o1,o2,o3,b4,b5,o6,b7,b8,2 # S4q added 3,o1,o2,o3,b4,o5,b6,b7,b8,2 # S4r 3,o1,o2,b3,b4,o5,b6,b7,o8,2 # S4t 3,o1,o2,b3,b4,b5,o6,o7,b8,2 # S4w 3,o1,o2,b3,o4,b5,o6,b7,b8,2 # S4y 3,o1,o2,b3,b4,o5,o6,b7,b8,2 # S4z 3,o1,o2,o3,o4,b5,b6,b7,o8,2 # S5a 3,o1,o2,o3,b4,o5,b6,o7,b8,2 # S5c 3,o1,o2,b3,o4,b5,o6,b7,o8,2 # S5e 3,o1,o2,o3,o4,o5,b6,b7,b8,2 # S5i 3,o1,o2,o3,o4,b5,o6,b7,b8,2 # S5j 3,o1,o2,b3,o4,b5,o6,o7,b8,2 # S5k 3,o1,o2,o3,o4,b5,b6,o7,b8,2 # S5n 3,o1,o2,o3,b4,o5,o6,b7,b8,2 # S5q 3,o1,o2,b3,o4,o5,o6,b7,b8,2 # S5r 3,o1,o2,b3,o4,o5,b6,o7,b8,2 # S5y 3,o1,o2,o3,o4,o5,o6,b7,b8,2 # S6a 3,o1,o2,o3,o4,o5,b6,o7,b8,2 # S6c 3,o1,o2,o3,o4,b5,o6,b7,o8,2 # S6e 3,o1,o2,b3,o4,o5,o6,b7,o8,2 # S6i 3,o1,o2,o3,o4,b5,o6,o7,b8,2 # S6k 3,o1,o2,o3,b4,o5,o6,o7,b8,2 # S6n 3,o1,o2,o3,o4,o5,o6,o7,b8,2 # S7c 3,o1,o2,o3,o4,o5,o6,b7,o8,2 # S7e 3,o1,o2,o3,o4,o5,o6,o7,o8,2 # S8 @NAMES 0 LIFE OFF 1 LIFE ON 2 TLIFE OFF 3 TLIFE ON @COLORS 0 0 0 0 1 0 255 0 2 0 0 255 3 0 255 51 4 255 0 0 #END
Here is a "LWSS→Glider" converter.
#BEGIN x = 45, y = 43, rule = HybridRegionB3S23B3S2-i34q 45B$21B.23B$20B.B.22B$21B.23B$45B$21B.23B$20B.B.22B$21B.23B$45B$21B.23B $20B.B.22B$21B.23B$45B$21B.23B$20B.B.22B$21B.23B$45B$21B.23B$20B.B.22B $21B.23B$45B$21B.23B$20B.B.22B$21B.23B$45B$21B.23B$20B.B.22B$21B.23B$ 16B.28B$45B$45B$45B$45B$18B.26B$45B4$20.3A$19.A2.A$22.A$22.A$21.A!
BokaBB fuse
BokaBB's 5c/7 "pi" fuse was (probably) first found on August 9th, 2016 in HighLife, where it burns cleanly. It was later re-discovered by BokaBB in Conway's Game of Life, where it produces pulsars. ColorfulGalaxy's CA discoveries (talk) 13:49, 16 November 2024 (UTC)
this is not a bug
这不是bug,你可以把你所有的RLE第一行改成x = 0, y = 0, rule =
are colorfulgabrielsp138, colorfulgalaxy, citation needed all hacked?