User:ColorfulGalaxy's CA discoveries/One per generation

From Esolang
Jump to navigation Jump to search

The discussion thread of the project: [1]

To be reposted

#C Sticky 1CPG, with the additional feature that the tick number is equal to the population starting from generation 10
#C Reduced from previously-posted 12-cell pattern
x = 12, y = 4, rule = Sticky
3A$3.A$A9.CB$.3A!
[[ LABEL 0 9 8 "#I #P" ]]
#C GeminoidUniv 1CPG, with the additional feature that the tick number is equal to the population starting from generation 10
x = 12, y = 4, rule = GeminoidUniv
3E$3.E$E9.AD$.3E!
[[ LABEL 0 9 8 "#I #P" ]]
#C All non-zero cells are counted.
x = 8, y = 7, rule = FreeElectronics
2.C$2.C$C2.B.2C$4.A$2C5.C$4.C$2.C.C.C!
#C All non-zero cells are counted.
x = 8, y = 7, rule = FreeElectronicsX
2.C$2.C$C2.B.2C$4.A$2C5.C$4.C$2.C.C.C!
#C p5 based on wickstretcher
x = 5, y = 19, rule = Ships
.D.C$2.BA$2D2$.D2.C$2.AB$2D2$.D2.C$.AB$2D2$2.E.C$.BA$2DE2$2.D.C$2.BA$3D!
#C Smaller two-barrel gun-based pattern.
#C ColorfulGalaxy spotted the period-4 gun. At first, he placed two of them side by side, but found that the result was one cell bigger than the wickstretcher-based pattern.
#C He then tried to merge two guns together and reduced the size by two.
#C Then he suddenly found out that he can simply make a two-barrel gun, pushing the size down to 17.
x = 5, y = 5, rule = Ships
A$B.AB$A3DB$B3DA$.BA.B!
x = 3, y = 17, rule = TernaryJvN60
GJ$LpSG2$KJ$HpSG2$GN$HpSG2$GJ$HpTG2$GJ$HpVG2$GJ$LpSK!
#C Determination 19P4H4V0A4
#C The domino puffer grows by 1 cell per generation, yet needs an odd-population on-off to smooth the population graph. No such oscillator could be found.
#C Instead, he uses two copies of a duoplet puffer, and finally merged them into one, which is glide-symmetric.
x = 12, y = 10, rule = B2a3i/S12
5b2o$5b2o$4bo2bo2$b2o6b2o$o10bo$3bo4bo$o8bobo$3bo$2bo!
#C 5×5P5H1V0A1 based on p5 non-monotonic wickstretcher in CARuler's rule
x = 23, y = 5, rule = OJMOOJ
.B3.EDE3.D3.E.E3.C$A.A3.G3.G.G3.G3.ABA$.G4.G4.G4.G4.G$.G4.G4.G4.G4.G$
11.G!
@RULE OJMOOJ
@COLORS
0   0   0   0
1 255   0   0
2 255 255   0
3   0 255   0
4   0 255 255
5   0   0 255
6 255   0 255
7 255 255 255
@TABLE
n_states:8
neighborhood:Moore
symmetries:rotate4reflect
var a = {0,1,2,3,4,5,6,7}
var b = a
var c = a
var d = a
var e = a
var f = a
var g = a
var h = a
1,0,1,0,1,0,0,0,0,1
0,1,0,1,0,0,0,0,0,2
1,1,0,0,1,0,0,0,0,1
0,0,2,1,2,0,0,0,0,1
2,1,0,1,0,0,0,0,0,1
1,2,1,0,0,0,0,0,0,1
0,0,2,1,2,0,2,1,2,3
0,3,0,1,1,0,1,1,0,1
0,1,0,3,0,1,0,0,0,3
0,3,0,0,0,0,0,0,0,2
0,3,0,1,0,0,0,0,0,1
1,0,3,0,3,0,0,0,0,1
2,0,1,0,1,0,0,0,0,4
0,2,0,1,0,0,0,0,0,5
1,1,0,0,2,0,0,0,0,1
0,0,5,4,5,0,0,0,0,4
1,5,4,0,0,0,0,0,0,1
5,4,0,1,0,0,0,0,0,1
1,1,0,0,4,0,0,0,0,5
4,0,1,0,1,0,0,0,0,4
0,4,0,1,1,0,1,1,0,6
0,4,0,1,0,0,0,0,0,3
6,5,3,4,3,5,0,0,0,5
4,3,5,6,5,3,0,0,0,5
0,0,3,4,3,0,0,0,0,5
5,6,4,3,0,0,0,0,0,3
0,3,4,0,0,0,0,0,0,3
3,4,6,5,0,0,0,0,0,3
0,3,3,0,0,0,0,0,0,2
0,0,3,3,3,0,0,0,0,2
3,3,5,5,0,0,0,0,0,5
3,3,5,5,5,3,0,0,0,5
0,2,2,0,0,0,0,0,0,4
0,0,2,2,2,0,0,0,0,4
2,2,5,5,0,0,0,0,0,5
2,2,5,5,5,2,0,0,0,5
0,0,4,4,4,0,0,0,0,4
4,4,5,5,0,0,0,0,0,5
5,0,4,0,0,0,0,0,0,5
4,0,5,0,5,0,0,0,0,4
0,5,0,4,0,0,0,0,0,1
0,1,4,0,0,0,0,0,0,1
1,5,0,4,0,0,0,0,0,1
0,5,1,4,1,5,0,0,0,1
0,6,0,0,0,0,0,0,0,6
6,4,0,0,0,0,0,0,0,4
6,0,0,0,0,0,0,0,0,4
6,0,6,4,6,0,0,0,0,4
6,4,6,0,0,0,0,0,0,4
6,0,6,0,0,0,0,0,0,4
6,0,6,0,0,0,6,0,0,4
0,3,0,2,0,0,0,0,0,4
2,0,4,0,4,0,0,0,0,2
0,4,0,2,0,0,0,0,0,4
4,2,0,0,0,0,0,0,0,2
0,0,4,2,4,0,0,0,0,3
0,4,0,4,2,0,0,0,0,6
4,2,0,0,4,0,0,0,0,4
0,3,0,4,6,0,0,0,0,6
4,6,4,6,3,0,3,0,0,4
0,6,0,0,0,4,0,0,0,6
0,6,0,0,3,0,0,0,0,6
0,4,0,4,6,0,0,0,0,4
0,0,4,6,4,0,0,0,0,6
6,4,0,0,4,0,0,0,0,4
4,0,6,0,2,0,0,0,0,6
6,0,4,4,0,0,0,0,0,4
4,4,6,0,0,0,0,0,0,4
0,2,0,4,0,6,4,0,0,4
6,0,4,4,2,0,0,0,0,4
0,6,0,3,0,2,0,0,0,6
6,4,0,0,3,0,0,0,0,4
0,0,4,2,4,0,6,0,6,6
0,6,0,2,0,3,0,2,0,5
0,5,0,4,0,2,0,4,0,5
0,4,0,4,0,0,3,0,0,3
4,0,4,0,3,0,0,0,0,3
0,4,2,0,0,6,0,0,0,6
0,3,0,2,6,6,6,2,0,5
2,6,0,0,3,0,0,0,0,5
4,3,0,0,4,0,0,0,0,7
7,4,0,0,3,0,0,0,0,7
0,7,4,0,4,7,0,0,0,1
0,0,7,1,7,0,4,0,4,2
0,7,1,0,0,4,0,0,0,4
0,0,6,1,6,0,0,0,0,3
0,6,1,0,0,0,0,0,0,3
2,0,2,0,2,0,0,0,0,2
0,2,0,2,0,0,0,0,0,5
5,2,0,2,0,0,0,0,0,5
2,5,2,0,2,5,0,0,0,2
0,2,5,2,5,2,5,2,5,1
1,2,5,2,5,2,5,2,5,1
2,5,2,1,2,5,0,0,0,1
5,2,1,2,0,0,0,0,0,6
2,4,0,5,0,4,0,0,0,5
0,0,3,3,3,0,2,2,2,2
0,3,3,0,2,2,0,0,0,4
0,0,5,2,5,0,2,0,2,3
0,3,0,0,5,2,5,0,0,3
0,3,2,5,0,0,0,0,0,4
1,3,0,6,1,1,1,6,0,7
7,0,0,0,0,0,0,0,0,7
0,0,3,3,3,0,7,0,0,2
0,0,1,1,1,0,4,0,4,6
0,1,1,0,0,4,0,0,0,5
5,2,7,0,0,0,0,0,0,7
0,7,0,2,0,2,0,2,0,7
7,0,5,2,5,0,0,0,0,7
0,7,2,5,0,0,0,0,0,4
0,4,0,0,7,0,7,0,0,2
7,4,7,0,0,0,0,0,0,2
7,4,7,0,7,4,0,0,0,2
0,7,0,0,4,0,0,0,0,5
4,7,0,7,0,0,0,0,0,5
5,6,0,0,0,0,0,0,0,7
0,0,5,6,5,0,0,0,0,7
3,3,5,5,7,0,0,0,0,5
7,0,7,0,7,0,0,0,0,7
7,2,0,0,7,0,7,0,0,7
0,7,0,7,0,7,0,7,0,3
7,0,7,3,7,0,0,0,0,2
1,0,2,0,2,0,2,0,2,7
0,2,0,1,0,2,0,0,0,3
0,3,7,3,0,0,0,0,0,7
2,0,7,0,7,0,0,0,0,2
0,2,0,7,0,0,0,0,0,6
2,6,0,0,0,6,0,0,0,2
6,2,0,0,6,0,0,0,0,6
0,0,6,2,6,0,0,0,0,5
0,6,2,0,0,0,0,0,0,3
2,6,0,5,0,6,0,0,0,2
6,2,5,0,6,0,0,0,0,6
0,0,3,5,3,0,0,0,0,1
3,5,2,6,0,0,0,0,0,1
6,2,5,3,0,0,6,0,5,1
0,5,0,5,0,5,0,5,0,3
1,2,1,0,0,1,0,0,0,1
1,1,0,1,0,0,0,0,0,7
0,0,7,0,7,0,7,0,7,5
0,5,0,0,6,2,6,0,0,5
5,0,7,0,7,0,7,0,7,4
7,0,5,0,0,0,0,0,0,7
0,7,0,4,0,7,0,0,0,6
4,0,7,0,7,0,7,0,7,2
6,0,6,2,6,0,0,0,0,4
2,6,0,6,0,6,0,6,0,7
4,6,0,0,4,7,4,0,0,6
0,0,4,6,0,6,4,0,0,2
0,6,0,6,0,6,0,6,0,1
7,7,0,0,0,0,0,0,0,7
7,7,0,0,0,7,0,0,0,7
7,7,0,0,5,0,5,0,0,2
0,5,0,7,0,5,0,0,0,3
0,5,0,7,7,0,0,0,0,1
7,7,0,0,1,2,1,0,0,7
2,3,0,1,0,7,0,1,0,7
0,3,2,1,0,0,0,0,0,1
7,7,0,0,1,0,1,0,0,7
0,2,0,1,0,7,0,1,0,7
7,7,0,0,5,4,5,0,0,7
5,4,7,0,0,0,0,0,0,7
7,7,0,0,7,0,7,0,0,7
7,0,4,0,7,0,0,0,0,5
0,7,0,0,5,4,5,0,0,2
7,0,2,0,7,0,0,0,0,1
0,2,0,7,0,7,0,7,0,4
7,7,0,0,0,2,0,0,0,1
7,7,0,0,1,4,1,0,0,4
0,1,4,7,7,0,0,0,0,1
7,0,1,4,1,0,0,0,0,7
0,7,4,1,0,0,0,0,0,7
7,1,0,0,0,7,0,0,0,5
#defaults
1,a,b,c,d,e,f,g,h,0
2,a,b,c,d,e,f,g,h,0
3,a,b,c,d,e,f,g,h,0
4,a,b,c,d,e,f,g,h,0
5,a,b,c,d,e,f,g,h,0
6,a,b,c,d,e,f,g,h,0
7,a,b,c,d,e,f,g,h,0

Please do not forget to repost the Factorio discovery from April.



#C Simple period-15 one cell per generation linear growth pattern assembled as a birthday present to the rule's discoverer.
#C This rule is non-isotropic and thus the pattern can not be rotated.
x = 44, y = 10, rule = Printer2
39.E2.E$36.H6.B$E2.E2.E2.E2.E2.E2.E2.E2.E2.E2.EN.G6.B$28.C8.B4.I$25.C
8.B4.K3.C$22.C4.I2.PB.P2.L$A2.A2.A2.A2.A2.A2.AC.A2.J2.AB.A2.A2.A2.A2.
A$12.I2.PC.P2.L$9.K3.C$I2.P2.L!
@RULE Printer2
@COLORS
0 0 0 0
1 255 255 0
2 255 128 0
3 0 145 255
4 128 128 128
5 37 89 44
6 122 140 58
7 64 128 100
8 6 120 0
9 93 0 255
10 212 0 255
11 0 0 138
12 162 0 255
13 74 69 64
14 61 66 71
15 100 90 117
16 48 48 48
@TABLE
n_states:17
neighborhood:vonNeumann
symmetries:none
0,0,0,2,0,2
0,0,1,2,0,2
0,0,0,2,1,2
0,0,1,2,1,2
2,0,0,0,0,0
2,0,1,0,0,0
2,0,0,0,1,0
2,0,1,0,1,0
0,0,0,3,0,3
0,0,1,3,0,3
0,0,0,3,1,3
0,0,1,3,1,3
3,0,0,0,0,0
3,0,1,0,0,0
3,0,0,0,1,0
3,0,1,0,1,0
4,0,0,0,0,0
4,0,1,0,0,0
4,0,0,0,1,0
4,0,1,0,1,0
0,0,5,2,5,13
0,0,5,2,0,13
0,0,5,3,5,14
0,0,5,3,0,14
0,4,9,0,9,15
0,4,0,0,9,15
0,0,10,0,10,2
0,0,11,0,10,2
0,0,10,0,11,3
0,0,11,0,11,3
0,0,0,0,10,2
0,0,0,0,11,3
0,0,9,2,9,2
0,0,9,2,0,2
0,0,9,3,9,3
0,0,9,3,0,3
2,0,9,0,9,0
2,0,9,0,0,0
3,0,9,0,9,0
3,0,9,0,0,0
6,0,0,0,0,1
7,0,0,0,0,0
0,0,0,6,0,8
0,0,0,7,0,8
8,0,0,0,0,0
8,0,0,1,0,0
0,0,0,8,0,5
5,0,13,0,13,6
5,0,14,0,13,7
5,0,13,0,14,6
5,0,14,0,14,7
5,0,13,0,0,6
5,0,14,0,0,7
9,0,15,0,15,12
9,1,15,0,15,12
9,0,0,0,15,12
9,1,0,0,15,12
13,0,5,0,5,0
13,0,0,0,5,0
14,0,5,0,5,0
14,0,0,0,5,0
15,0,9,0,9,0
15,0,9,0,0,0
0,0,0,12,0,11
1,0,0,12,0,10
11,0,0,0,0,0
10,0,0,0,0,1
0,0,0,11,0,9
0,1,0,11,0,9
0,0,0,10,0,9
0,1,0,10,0,9
12,0,0,0,0,0
12,1,0,0,0,0
9,0,15,1,15,12
9,1,15,1,15,12
9,0,0,1,15,12
9,1,0,1,15,12
0,0,0,2,9,2
0,0,0,3,9,3
2,0,0,0,9,0
3,0,0,0,9,0
0,0,0,2,5,13
0,0,0,3,5,14
12,1,0,1,0,0
0,4,9,0,0,15
12,0,0,0,0,0
12,1,0,0,0,0
12,0,0,1,0,0
9,0,0,0,0,16
9,1,0,0,0,16
9,0,0,1,0,16
9,1,0,1,0,16
16,0,0,0,0,12
16,1,0,0,0,12
16,0,0,1,0,12
16,1,0,1,0,12
2,0,16,0,0,0
2,0,0,0,16,0
2,0,16,0,16,0
3,0,16,0,0,0
3,0,0,0,16,0
3,0,16,0,16,0

Reposted

#C b3s23 - b37c8s238 1cpg
x = 306, y = 55, rule = B37c8/S238
90bo$90b3o144bo$82bo10bo143b3o$82b3o3b3o2bo2b2o55bo75bo10bo$85bobobobobobobo55b3o73b3o3b3o2bo2b2o$80b3o2bobo3bobobo60bo75bobobobobobobo$79b
obobobobobobobob2o54b3o2bo2b2o66b3o2bobo3bobobo$75b2o2bo3bobobobo3bo56bobobobobobo65bobobobobobobobob2o$75bobobobobobobobobobo52b2o2bo3bobob
o63b2o2bo3bobobobo3bo$77bobobo3bobo2b3o53bobobobobobob2o62bobobobobobobobobobo$76b2obobobobobo60bobobo3bo67bobobo3bobo2b3o$79bo2b3o3b3o56b
2obobobobo66b2obobobobobo$79bo10bo59bo2b3o70bo2b3o3b3o$80b3o67bo75bo10b
o$82bo68b3o73b3o$153bo75bo4$173b2o3b2o$106bo20b2o3b2o39bobobobo$65bo40b3o18bobobobo40bo3bo$65b3o30bo10bo18bo3bo$57bo10bo29b3o3b3o2bo2b2o59b2o
3b2o118bo$34bo22b3o3b3o2bo2b2o28bobobobobobobo13b2o3b2o34b2o2bobo3bobo2b2o28bo84b3o$34b3o23bobobobobobobo23b3o2bobo3bobobo10b2o2bobo3bobo2b
2o11b2o3b2o11bobob2o5b2obobo28b3o35bo38bo10bo$26bo10bo17b3o2bobo3bobobo24bobobobobobobobob2o9bobob2o5b2obobo13bobo14bo13bo21bo10bo34b3o36b
3o3b3o2bo2b2o$26b3o3b3o2bo2b2o12bobobobobobobobob2o19b2o2bo3bobobobo3bo13bo13bo11bo2bobo2bo47b3o3b3o2bo2b2o22bo10bo38bobobobobobobo$29bobob
obobobobo8b2o2bo3bobobobo3bo22bobobobobobobobobobo38bo3bobo3bo10bo13bo24bobobobobobobo22b3o3b3o2bo2b2o29b3o2bobo3bobobo$24b3o2bobo3bobobo10b
obobobobobobobobobo24bobobo3bobo2b3o14bo13bo10bo3bobo3bo9bobob2o5b2obobo18b3o2bobo3bobobo27bobobobobobobo28bobobobobobobobob2o$23bobobobob
obobobob2o11bobobo3bobo2b3o24b2obobobobobo18bobob2o5b2obobo13bobo13b2o2bobo3bobo2b2o17bobobobobobobobob2o21b3o2bobo3bobobo26b2o2bo3bobobobo
3bo$19b2o2bo3bobobobo3bo13b2obobobobobo32bo2b3o3b3o15b2o2bobo3bobo2b2o8bobob2ob2obobo13b2o3b2o18b2o2bo3bobobobo3bo23bobobobobobobobob2o25bo
bobobobobobobobobo$19bobobobobobobobobobo16bo2b3o3b3o29bo10bo20b2o3b2o15bob2ob2obo40bobobobobobobobobobo19b2o2bo3bobobobo3bo30bobobo3bobo2b
3o$21bobobo3bobo2b3o17bo10bo30b3o75bo3bo21bobobo3bobo2b3o20bobobobobobobobobobo29b2obobobobobo$20b2obobobobobo23b3o40bo29bo3bo40bobobobo19b
2obobobobobo27bobobo3bobo2b3o33bo2b3o3b3o$23bo2b3o3b3o22bo69bobobobo39b2o3b2o22bo2b3o3b3o23b2obobobobobo38bo10bo$23bo10bo92b2o3b2o68bo10bo26b
o2b3o3b3o36b3o$24b3o176b3o34bo10bo38bo$26bo178bo35b3o$243bo$130b2o$129b3o158b2o$117bo8bob2o9b2o149b3o$80bo36bobo6bo2bo9b2o135bo15b2obo5b2o$79b
2o37bobo5bob2o109bo34bobo15bo2bo5b2o$26bo36b2o13b2o8b2o15b2o11bo2bo7b3o107b2o32bobo16b2obo$26bobo34b3o11b3o8b2o15b2o11bobo9b2o53bo41b2o11b
2o8b2o15b2o3bo2bo14b3o$9bo17bobo4b2o29b2obo9b2o37bobo63bobo40b3o11b3o7b2o15b2o4bobo14b2o$9b2o16bo2bo3b2o18b2o9bo2bo10b2o36bo56bo7bobo11b2o
25bob2o13b2o32bobo$10b2o15bobo24b2o9b2obo11bo92b2o6bo2bo11b2o18b2o5bo2bo12b2o35bo$2o8b3o13bobo34b3o106b2o4b2o2bobo31b2o5bob2o12bo$2o8b2o14b
o36b2o97b2o7b3o4b2o3bobo40b3o$9b2o151b2o8b2o4b2o5bo41b2o$9bo163b2o$174bo!
#C TLife 1cpg
x = 1564, y = 175, rule = B3/S2-i34q
715bo7bo85bo7bo26bo7bo$715bo7bo18bo7bo24bo7bo25bo7bo26bo7bo$714bobo5bobo17bo7bo24bo7bo24bobo5bobo24bobo5bobo$679bo7bo53bobo5bobo22bobo5bob
o$679bo7bo27bo3bo3bo85bo3bo3bo26bo3bo3bo$678bobo5bobo28bo3bo20bo3bo3bo24bo3bo3bo27bo3bo30bo3bo$717bo3bo22bo3bo28bo3bo29bo3bo30bo3bo26bo7bo
$679bo3bo3bo29bobobo22bo3bo28bo3bo29bobobo30bobobo26bo7bo$681bo3bo32bobo23bobobo28bobobo30bobo32bobo26bobo5bobo$681bo3bo59bobo30bobo$681bo
bobo191bo3bo3bo$682bobo194bo3bo$879bo3bo$879bobobo$880bobo5$720b2o92b2o33b2o$719bo2bo24b2o31b2o31bo2bo31bo2bo$718bob2o24bo2bo29bo2bo29bob2o
31bob2o$684b2o31bo2b2o23bob2o29bob2o29bo2b2o30bo2b2o$683bo2bo29bob2o24bo2b2o28bo2b2o28bob2o31bob2o$682bob2o30bob2o23bob2o29bob2o30bob2o31bob
2o$681bo2b2o31bo25bob2o29bob2o31bo34bo35b2o$680bob2o60bo32bo103bo2bo$680bob2o196bob2o$681bo197bo2b2o$878bob2o$878bob2o$879bo3$719bo3b2o88b
o3b2o29bo3b2o$718bobo2b2o21bo3b2o27bo3b2o27bobo2b2o28bobo2b2o$718bob3o22bobo2b2o26bobo2b2o27bob3o30bob3o$683bo3b2o28b2o4b2o20bob3o28bob3o28b
2o4b2o27b2o4b2o$682bobo2b2o27bo3b2o3bo18b2o4b2o25b2o4b2o25bo3b2o3bo25bo3b2o3bo$682bob3o30b2obob2o2bo16bo3b2o3bo23bo3b2o3bo25b2obob2o2bo25b2o
bob2o2bo$681b2o4b2o29bo3bob2o18b2obob2o2bo23b2obob2o2bo25bo3bob2o27bo3bob2o26bo3b2o$680bo3b2o3bo27bo2b2o2bo20bo3bob2o25bo3bob2o25bo2b2o2bo
27bo2b2o2bo26bobo2b2o$681b2obob2o2bo26b4o3bo19bo2b2o2bo25bo2b2o2bo26b4o3bo27b4o3bo26bob3o$682bo3bob2o25b2o4b2ob2o18b4o3bo25b4o3bo24b2o4b2o
b2o24b2o4b2ob2o24b2o4b2o$681bo2b2o2bo27bob2obobo18b2o4b2ob2o22b2o4b2ob2o24bob2obobo27bob2obobo25bo3b2o3bo$681b4o3bo26bo2b2obobo19bob2obobo
25bob2obobo25bo2b2obobo26bo2b2obobo26b2obob2o2bo$679b2o4b2ob2o25b2o3bobo19bo2b2obobo24bo2b2obobo25b2o3bobo27b2o3bobo28bo3bob2o$680bob2obob
o32bo21b2o3bobo25b2o3bobo31bo34bo29bo2b2o2bo$679bo2b2obobo31b2o26bo32bo32b2o33b2o29b4o3bo$679b2o3bobo59b2o31b2o96b2o4b2ob2o$684bo193bob2obo
bo$683b2o192bo2b2obobo$877b2o3bobo$882bo$881b2o$724b2o92b2o33b2o$724bo26b2o31b2o32bo34bo$718b2ob2obo26bo32bo27b2ob2obo28b2ob2obo$688b2o24b
o2bobobobob2o18b2ob2obo26b2ob2obo23bo2bobobobob2o22bo2bobobobob2o$688bo25b4obobobobo15bo2bobobobob2o20bo2bobobobob2o21b4obobobobo23b4obobob
obo$682b2ob2obo30bo2b2obo15b4obobobobo21b4obobobobo27bo2b2obo28bo2b2obo$678bo2bobobobob2o25b3o5bo21bo2b2obo26bo2b2obo24b3o5bo26b3o5bo32b2o
$678b4obobobobo26bo2b4o20b3o5bo24b3o5bo25bo2b4o28bo2b4o34bo$683bo2b2obo27bo2bo2b4o16bo2b4o26bo2b4o28bo2bo2b4o25bo2bo2b4o24b2ob2obo$680b3o5b
o26bob2o4bo2bo17bo2bo2b4o23bo2bo2b4o22bob2o4bo2bo23bob2o4bo2bo20bo2bobobobob2o$680bo2b4o27bobo25bob2o4bo2bo21bob2o4bo2bo21bobo32bobo30b4ob
obobobo$681bo2bo2b4o23bobo24bobo30bobo31bobo32bobo35bo2b2obo$679bob2o4bo2bo24bo25bobo30bobo32bo34bo33b3o5bo$678bobo61bo32bo102bo2b4o$678bo
bo198bo2bo2b4o$679bo197bob2o4bo2bo$876bobo$876bobo$877bo5$725b2o92b2o33b2o$725bo26b2o31b2o32bo34bo$719b2ob2obo26bo32bo27b2ob2obo28b2ob2obo
$689b2o24b2obobobobob2o18b2ob2obo26b2ob2obo23b2obobobobob2o22b2obobobobob2o$689bo25bob2obo3bobo15b2obobobobob2o20b2obobobobob2o21bob2obo3b
obo23bob2obo3bobo$683b2ob2obo30bobobo2bo14bob2obo3bobo21bob2obo3bobo27bobobo2bo27bobobo2bo$679b2obobobobob2o24b2obo5b2o20bobobo2bo25bobobo2b
o22b2obo5b2o24b2obo5b2o31b2o$679bob2obo3bobo25bo3b4o19b2obo5b2o22b2obo5b2o23bo3b4o27bo3b4o34bo$684bobobo2bo25b2obo2bob2o16bo3b4o25bo3b4o27b
2obo2bob2o25b2obo2bob2o25b2ob2obo$680b2obo5b2o28bo4bobo17b2obo2bob2o23b2obo2bob2o26bo4bobo27bo4bobo21b2obobobobob2o$680bo3b4o28bobo27bo4bobo
25bo4bobo23bobo32bobo29bob2obo3bobo$681b2obo2bob2o25b2o25bobo30bobo31b2o33b2o35bobobo2bo$683bo4bobo52b2o31b2o100b2obo5b2o$680bobo195bo3b4o$
680b2o197b2obo2bob2o$881bo4bobo$878bobo$878b2o11$779b4o$778bo4bo$778b2o2b2o$778bo4bo$778bob2obo$777bo6bo$777bo6bo$778bob2obo$778bo4bo$778b
2o2b2o$778bo4bo$779b4o13$115bo$116bo$115bobo$110b3o4b2o$9bo100b3o3bobo$8bobo99b2o3b4o382b3o418b3o$8bob2o99bob2ob2o188bo193b2ob2o416b2ob2o89b
o$9b2o99b3ob2o188bo2b4o188bo2b3o416b2ob3o86bo2bo$59bo51b2ob2o188bo193bobo2bob2o412b2ob2obo46bo39bo3b2o$58bob2o50b3o48b2o139bo199b4o410b4o3b
2o44b4o37bo3bo$57b5o102bo39b2obo97b2o197bo2bo410bobo3b3o44bo3bo35bo2bo2bo98bo3b2o$56b2obo2bo99b3o38bo2bo148b2o42bo101b2o2b3o91bo97bo2bo119b
2o96b2o4b3o44b5o36b2o2b3o103bo$57b2ob2o101bo41bo2bo146bo42b3o100b6o90b2ob2o95bo121b2obo96bobo49bo40bo2bo46b2obo56bo$57b2ob2o97b5o38b3o2b2o45b
o142bo2bo100b3obo45b3o41bo2bo3bo94bo122bobo97bo49b3o41bo2bo45b2o51b4o2bo192bob3o$59bo99bo3bo39bo2bo2bo43b2o99bobo41b2o48bo102bob5o38bo2bo48b
o48bo123bo47bo51bo48bo42bob2o103bo193b6o$160b4o40bo3bo44bobo98bo91b2ob2o102bobob2o36bobo5bo44bo47bo3bo166b2ob2o98b2o86b2o110bo142b3o2b2o191b
3o$162bo40b2o3bo42bo2bo191b2ob2o104bobo37bo2bob3o44bo52bo166b2ob2o102bo85bo4b2ob2o98bobo44b2o96bo2bo193bo$204bo2bo42bob2o191bob2o2bo97b2o4b
obo38bob2obo95b3o166bo2bob2o101bo90b2obo145bo2bo95b4o193bo3bo$205bo43b2ob2o47bo144b2ob2o104b2o41bo52bo215b5o192bo2bo101bo44b3o97b2obo2bobo39b
2o42bo106bo$300bo2bo143b4o193bo5b2o93bo2bo118b2obo192bobo102b2o45bo100b3o2bo39bobo4b2o33bob2obo104bo$299b2o3bo143bo193b2obo4bo94b2o122bo194b
2o198bo51b2ob2o40bobo38b3obo2bo103bo$3bo250b2o44bo3bo338b2ob2o3bo96b2o314bo197b4o51b3o40b2obobo35bo5bobo45bo54bo2bo45b2o$3bo249bob2o42bo2bo
2bo340b2o269bo344b2ob2o94b5obo37bo2bo46b2o105b2o$3bo101b2o191b3o2b2o340bo270bobo342bo2b2obo97b3o34bo3bo2bo47bo102bo2bo$3bo100bob2o89b3o101bo2b
o44bob2o293b2o267b2obo343b2ob2o136b2ob2o47b2o$o3bo99bobo89b2ob2o98bo2bo47b2o295bo165b3o100b2o88bo255b2ob2o138bo45bo3b2ob2o48bo$o104bo49bo39b
3ob2o99b2obo512bo148bo39bo258bo187bo4bob2o48bo$b3o149b2ob2o38bob2ob2o44bo564bo3bo146b2obo37bobo444b2o5bo48b3o$153b2ob2o37b2o3b4o41b4o96b2o
b2o144b2o317bo149b5o35b2o4b3o97bob2o338bo$50bo2bo98b2obo2bo36b3o3bobo40bo3bo97bob2o42b2o3bo95bo2bo316bo148bo2bob2o34bobo3b3o98bo2bo197bo189b
o$52b2o99b5o37b3o4b2o40b5o98bo2bo40bo102b3o197bo118bo149b2ob2o35b4o3b2o96bo2bo198b3o89b3o50bo43b2ob2o$49b2o103bob2o42bobo45bo100bobo39bo103b
o196bob2obo115bo2bo47b2o97b2ob2o36b2ob2obo97b2o2b3o45bo46bo102bo2bo87b2ob2o47bo44bo3bo2bo$155bo45bo45b3o99b2o40bo2b4o146bo41b3obo100bo2bob3o
162b2o102bo40b2ob3o47bo47bo2bo2bo46b2o41b4o2bo101b2o47bo40b3o2bo46b2o46bo2bo45bo6bobo$200bo48bo100bo42bo149b4o39b6o99bobo5bo43bo117bo2bo141b
2ob2o48bo48bo3bo46bobo47bo148b2ob2o36b2obo2bobo44b2o43bo5bobo44bo7b2o$248b2o191bo100b2ob2o39b2o2b3o99bo2bo46b2o263b3o45b2o51bo3b2o46bo2bo45b
o148b2ob2o35b4o96b3obo2bo45bo6bo$441bobo97bob2o2bo41bo2bo98bo2bo3bo42bo313bo53bo2bo48b2obo38bo3b2o148bo2b2obo34bo2bo97bob2obo$542b2ob2o42b4o
100b2ob2o44b2o311b3o53bo44bo4b2ob2o89b2o101b2ob2o35b3o2b2o97bo44bo$442bo99b2ob2o36bobo2bob2o48b2o53bo43b2ob2o3bo308bo97b2o100bo101b4o37b6o142b
2o5bo$442b2o100bo39bo2b3o44b2o4bobo95b2obo4bo309b5o299bo39bob3o45b3o95bo4bob2o$585b2ob2o50bobo97bo5b2o308bo3bo98b2o94bobo188b5obo94bo3b2ob2o
$586b3o49bobob2o103bo308b4o98b2obo95bo187b2obobo100b2o$636bob5o414bo388bobo104bo$636b3o104bo702bobo4b2o96b2o$744bo702b2o102bo$744bo!
#C VesselLife 1cpg
x = 6, y = 17, rule = B2n3-q5y6c/S23-k
4bo$4b2o$3bobo$bo$obo$bo6$4b2o$3bobo$5bo$b2o$obo$bo!
# Glitter2 1cpg
# 8 barrels + 5 identical oscillators
x = 11, y = 102, rule = B3acijn4cjyz5cy6an8/S2-n3-ckqy4aw5y6c7c8
4b2o$4b2o2$6bo$5bo$5b3o4$4b2o$4b2o4$4bobo$4b2o$5bo2$4b2o$4b2o6$2b2o$b
2o$4b2o$4b2o4$2bo$bobo$o2bo$b2o$4b2o$4b2o15$3b2ob2o$2o2bobo2b2o$o3bob
o3bo$2b2o3b2o$b3o3b3o7$3b2ob2o$2o2bobo2b2o$o3bobo3bo$2bobobobo$bobo3b
obo$2bo5bo7$3b2ob2o$2o2bobo2b2o$o3bobo3bo$2bobobobo$bobo3bobo$2bo5bo6$
3b2ob2o$2o2bobo2b2o$o3bobo3bo$2b3ob3o$bo7bo$2bo5bo6$3b2ob2o$2o2bobo2b
2o$o3bobo3bo$2b3ob3o$b2o5b2o!
#C Traffic Flow 1cpg
x = 94, y = 11, rule = B2e3aciy4jnw68/S23678
bo5bo12b2o7b2o2b2o12b2o2b2o12b2o2b2o12b2o2b2o$bobobobo6b2o4b2o7b2o2b2o
12b2o2b2o12b2o2b2o12b2o2b2o$b3ob3o6bo3bo5bo2bo8bo2bo2bo2bo8bo2bo2bo2b
o8bo2bo2bo2bo8bo2bo$18b2o4b3ob2ob2ob2ob3o2b6ob2ob6o2b5o2b2o2b5o2b5o2b
2o2b5o$b2o3b2o4b2o2b2o11bob2obo14b2o13bo2b2o2bo10bo2b2o2bo$b2o3b2o4b2o
bobo7bob3o4b3obo4bob3o4b3obo4bob2o6b2obo4bob2o6b2obo$16bo3bo4b2o10b2o
4b2o10b2o4b2o10b2o4b2o10b2o$19b2o7b2o4b2o10b2o4b2o10b2o4b2o10b2o4b2o$
2o5b2o7b2o10b2o4b2o10b2o4b2o10b2o4b2o10b2o4b2o$4ob4o7b2o$b3ob3o!
#C 熠熠种花(Glimmering Garden) 1CPG
#C based on wickstretcher
x = 29, y = 96, rule = B3-jknr4ity5ijk6i8/S23-a4city6c7c
bo11b3o$4o9bo$o2bo10bob3o$bobo7b3obo3bo$b4o5b2ob2o4bo$b4ob3o2bo2bo2b2o
bo$7bo2bo3bo4b2o$5b2o4bob3o2b3o$8b3o8b2o$9bo7bobobo$11b2o3bo3b2o$13b2o
$12bo10bo$12b3o4b4obo$14b2o3bo4bo$15bob2o5bo$17b2o4bobo$18b2o2bobobo$
22bo3bo$17b2ob4o2bo$17bobo2bo$17b2o7bo$17b2o5b2obo$17b2o5bo$20bo$19bo
bo$20bo6$14b2o$b2o11bo2bo$2ob3o8bo4bo$bo2b2o6b2o$b4o6b2o2b4obo$7b2o2b
o5bo2bo$4bo2bo2bo2bob2o3b2o$4b3o2bo6bo3bobo$4b2o2b2o6bo2b2o$11b6o2bo$
12bo7bobo$13bo7b2o$13b2o6b3o$13bob2o3bo3bo$14b3o3bo4b2o$14b4o2b4ob2o$
15b2o8bo$19bo4bobo$19b3obobob2o$18bo8b2o$17b2o3bob2o$17bob2o2b2o$16b2o
bo4b2obo$27bo$20bo6bo$bo6bo10bobo$obo4bobo10bo$2obo3b2obo$bobo4bobo$b
ob2o3bob2o$2bobo4bobo$3bo6bo2$bo6bo$obo4bobo$2obo3b2obo$bobo4bobo$bob
2o3bob2o$2bobo4bobo$3bo6bo2$bo6bo$obo4bobo$2obo3b2obo$bobo4bobo$bob2o
3bob2o$2bobo4bobo$3bo6bo2$bo6bo$obo4bobo$2obo3b2obo$bobo4bobo$bob2o3b
ob2o$2bobo4bobo$3bo6bo2$bo6bo$obo4bobo$2obo3b2obo$bobo4bobo$bob2o3bob
2o$2bobo4bobo$3bo6bo!
#C Leaplife 1CPG
#C The rule, of course, is not copyrighted.
x = 42, y = 48, rule = B2n3/S23-q8
2o21b3o$obo20bo$o23bo$3bo22bo$4bo22b2o$3bobo21b2o$4b3o22b3o$5b3o22b2o
$9bo21b3o$7bo23b2o$9bobo2b2o18bo2b3o$11bo2bobo17bobo$12bobo24bo$13bo22b
o$13bo$15bo22b2o$14b3o21bobo$15bobo21bobo$16bo2bo21bo$19bo2$2b2o$bo2b
o$obo2bo$o2bobo$bo3b2o$2b3o$4bo4$2b2o$bo2bo$obo2bo$o2bobo$bo3b2o$2b3o
$4bo4$2b2o$bo2bo$obo2bo$o2bobo$bo3b2o$2b3o$4bo!
#C BasiKnight 1cpg
#C [[ ZOOM 4 THEME Catagolue ]]
x = 119, y = 19, rule = B2e3air4ijwz/S12-in3k4r5i
94bo20b3o$71b3o19b2o20bo$27bo20b3o20b3o18b2o$4b3o19b2o20bo22bo20b2o$4b
3o18b2o86b3o$4bo20b2o43bo18b4o19b4o$46b3o18b4o18b2obo18b3o2bo$3bo18b4o
19b4o40b4o22b2o$4o18b2obo18b3o2bo40bo$22b4o22b2o17b2o2b2o16b2o2b2o21b
2o$23bo44bo21bo23bo$2o2b2o16b2o2b2o17b2o2b2o17b2o2b2o16b2o2b2o17b2o2b2o5$
2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2$b
2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2$b
!