Тест на терпение
Jump to navigation
Jump to search
Paradigm(s) | Declarative |
---|---|
Designed by | User:Hakerh400 |
Appeared in | 2020 |
Computational class | Not applicable |
Major implementations | Implementation in JavaScript |
File extension(s) | .txt |
Тест на терпение is an interactive theorem prover invented by User:Hakerh400 in 2020.
Overview
This is a theorem prover inspired by Isabelle/HOL. It uses simple type theory. All types are inhabited. There are no builtin axioms. There is no meta-level and term-level, unlike in Isabelle. Everything is defined on the term level.
The builtin logic knows only about the following concepts:
- Proposition type (boolean)
- Function type
- Lambda expression
- Universal quantifier
- Implication
- Equality
Syntax
Source code consists of directives. The language recognizes the following directives:
spacing
- Specify whitespace information for pretty-printertype
- Declare a typeconst
- Declare a valuedef
- Define a valuemeta
- Associate an identifier to one of the builtin conceptsaxiom
- Specify an axiomlemma
- Specify a lemma (theorem) and verify its proof
Tactics
There are a lot of tactics that can be used in proof mode. We are not going to document all of them. Not even a single one.
Example
We define some of the basic data structures and prove some theorems about them.
spacing ( ⟹ ) 1 1 1 spacing ( ⟶ ) 1 1 1 spacing (THE) 0 1 0 type ( ⟹ ) 2 [infixr 25] type bool 0 const True :: bool const False :: bool const (∀) [binder] :: ('a ⟹ bool) ⟹ bool const (THE) [binder] :: ('a ⟹ bool) ⟹ 'a const ( ⟶ ) [infixr 25] :: bool ⟹ bool ⟹ bool const (=) [infixl 50] :: 'a ⟹ 'a ⟹ bool meta bool bool meta arrow ( ⟹ ) meta lambda (λ) meta uni (∀) meta imp ( ⟶ ) meta eq (=) axiom true: True axiom bool_dif: ∀P. True = False ⟶ P axiom bool_ind: ∀P. P True ⟶ P False ⟶ (∀) P axiom refl: ∀a. a = a axiom sub: ∀P a b. a = b ⟶ P a ⟶ P b axiom ext: ∀f g. (∀a. f a = g a) ⟶ f = g axiom the: ∀a. (THE b. b = a) = a lemma psub: ∀P Q. P = Q ⟶ P ⟶ Q - sub[λx. x] 1 2 % lemma eq_com: ∀a b. a = b ⟶ b = a - sub[λx. x = a] 1 refl % lemma eq_tran: ∀a c b. a = b ⟶ b = c ⟶ a = c - eq_com 1* - sub[λx. x = b] 1 2 % lemma subr: ∀P a b. b = a ⟶ P a ⟶ P b - eq_com 1* - sub 1 2 % lemma psubr: ∀P Q. Q = P ⟶ P ⟶ Q - subr[λx. x] 1 2 % lemma fun_cong: ∀f g a. f = g ⟶ f a = g a - sub[λx. a c = x c] 1 refl % lemma fun_cong2: ∀f g a b. f = g ⟶ f a b = g a b - fun_cong 1 [c] - fun_cong 1 % lemma arg_cong: ∀f a b. a = b ⟶ f a = f b - sub[λx. a b = a x] 1 refl % lemma cong: ∀f g a b. f = g ⟶ a = b ⟶ f a = g b - fun_cong 1 [c] - sub[λx. a c = b x] 1 2 % lemma imp_refl: ∀P. P ⟶ P - 1 % lemma lk_lem1: ∀P Q. P ⟶ Q ⟶ P - 1 % lemma lk_lem2: ∀P Q R. (P ⟶ Q ⟶ R) ⟶ (P ⟶ Q) ⟶ P ⟶ R - 2* 3+ - 1 3 2 % const undefined :: 'a def (¬) [prefix 70]: λP. P ⟶ False def (∧) [infixl 35]: λP Q. ¬(P ⟶ ¬Q) def (∨) [infixl 30]: λP Q. ¬P ⟶ Q lemma not_def: ∀P. ¬ P = (P ⟶ False) - fun_cong ¬_def % lemma conj_def: ∀P Q. (P ∧ Q) = ¬(P ⟶ ¬ Q) - fun_cong2 ∧_def % lemma disj_def: ∀P Q. (P ∨ Q) = (¬P ⟶ Q) - fun_cong2 ∨_def % lemma falI: ∀P. P ⟶ ¬P ⟶ False - psub not_def 2 1 % lemma falE: ∀P. False ⟶ P - bool_ind[λx. x] true 1 % lemma notI: ∀P. (P ⟶ False) ⟶ ¬P - eq_com not_def - psub 2 1 % lemma notI2: ∀P. P ⟶ ¬¬P - falI 1 - notI 1 % lemma nfalse: ¬False - notI imp_refl % lemma true_neq_false: ¬ (True = False) - notI % - psub 1 true % lemma bool_exh: ∀a P. (a = True ⟶ P) ⟶ (a = False ⟶ P) ⟶ P - bool_ind[λx. a = x ⟶ b] 1 2 refl % lemma eq_truE: ∀P. P = True ⟶ P - psubr 1 true % lemma eq_falE: ∀P. P = False ⟶ ¬P - psub 1 - notI 1 % lemma falE2: ∀P Q. P ⟶ ¬P ⟶ Q - falI 1 2 - falE 1 % lemma notE: ∀P. ¬¬P ⟶ P - bool_exh[a, a] % - eq_truE 2 % - eq_falE 2 - falE2 2 1 % lemma conjI: ∀P Q. P ⟶ Q ⟶ P ∧ Q - psubr conj_def % - notI % - 3 1 - falI 1 2 % lemma imp_swap: ∀P Q R. (P ⟶ Q ⟶ R) ⟶ Q ⟶ P ⟶ R - 1 3 2 % lemma falE2_swap: ∀P Q. ¬P ⟶ P ⟶ Q - falE2 2 1 % lemma notE2: ∀P. (¬P ⟶ False) ⟶ P - notI 1 - notE 1 % lemma conjE1: ∀P Q. P ∧ Q ⟶ P - psub conj_def 1 - notE2 % - falE2_swap 2 - falI 2 1 % lemma cpos_pp: ∀Q P. (P ⟶ Q) ⟶ ¬Q ⟶ ¬P - notI % - 1 3 - falI 2 1 % lemma cpos_pn: ∀Q P. (P ⟶ ¬Q) ⟶ Q ⟶ ¬P - notI % - 1 3 - falI 1 2 % lemma cpos_np: ∀Q P. (¬P ⟶ Q) ⟶ ¬Q ⟶ P - notE2 % - 1 3 - falI 2 1 % lemma cpos_nn: ∀Q P. (¬P ⟶ ¬Q) ⟶ Q ⟶ P - notE2 % - 1 3 - falI 1 2 % lemma conjE2: ∀P Q. P ∧ Q ⟶ Q - psub conj_def 1 - notE2 % - lk_lem1 2 - falI 2 1 % lemma conj_com: ∀P Q. P ∧ Q ⟶ Q ∧ P - conjE1 1+ - conjE2 1 - conjI 2 1 % lemma disjI1: ∀P Q. P ⟶ P ∨ Q - psubr disj_def % - falE2 1 2 % lemma disjI2: ∀P Q. P ⟶ Q ∨ P - psubr disj_def % - 1 % lemma imp_tran: ∀P R Q. (P ⟶ Q) ⟶ (Q ⟶ R) ⟶ P ⟶ R - 1 3 - 1 2 % lemma split: ∀P Q. (P ⟶ Q) ⟶ (¬P ⟶ Q) ⟶ Q - bool_exh[a] % - eq_truE 3 - 1 3 % - eq_falE 3 - 2 3 % lemma disjE: ∀P Q R. P ∨ Q ⟶ (P ⟶ R) ⟶ (Q ⟶ R) ⟶ R - psub disj_def 1* - split[a] % - 2 4 % - 1 4 - 2 3 % lemma disj_com: ∀P Q. P ∨ Q ⟶ Q ∨ P - disjE 1 % - disjI2 1 % - disjI1 1 % lemma eq_truI: ∀P. P ⟶ P = True - bool_exh[a] % - 2 % - eq_falE 2 - falE2 1 2 % lemma eq_falI: ∀P. ¬P ⟶ P = False - bool_exh[a] % - eq_truE 2 - falE2 2 1 % - 2 % lemma eq_tran1: ∀a b c. a = c ⟶ b = c ⟶ a = b - eq_com 2 - eq_tran 1 2 % lemma eq_tran2: ∀a b c. c = a ⟶ c = b ⟶ a = b - eq_com 1* - eq_tran 1 2 % lemma imp_eq_p: ∀P Q. P ⟶ Q ⟶ P = Q - eq_truI 1* - eq_truI 2 - eq_tran1 1 2 % lemma eq_notI: ∀P Q. P = Q ⟶ ¬P = ¬Q - arg_cong 1 % lemma ntru_eq_fal: ¬True = False - eq_falI % - notI2 true % lemma nfal_eq_tru: ¬False = True - eq_truI nfalse % lemma add_sup: ∀Q P. P ⟶ Q ⟶ P - 1 % lemma not2_eq: ∀P. ¬¬P = P - split[a] % - imp_eq_p % - notI2 1 % - 1 % - eq_falI 1 - subr[λx. ¬¬x = x] 1 % - subr[λx. ¬x = False] nfal_eq_tru % - ntru_eq_fal % lemma eq_notE: ∀P Q. ¬P = ¬Q ⟶ P = Q - arg_cong[(¬)] 1 - sub[λx. x = ¬¬b] not2_eq 1 - sub[λx. a = x] not2_eq 1 % lemma imp_eq_n: ∀P Q. ¬P ⟶ ¬Q ⟶ P = Q - imp_eq_p 1 2 - eq_notE 1 % lemma imp_neq: ∀P Q. P ⟶ ¬Q ⟶ ¬ (P = Q) - notI % - eq_truI 1* - eq_falI 2* - sub[λx. x = b] 1 3 - eq_tran 2 1 - bool_dif 1 % lemma excm: ∀P. P ∨ ¬P - split[a] % - disjI1 1 % - disjI2 1 % lemma not_P_and_not_P: ∀P. ¬(P ∧ ¬P) - notI % - conjE1 1+ - conjE2 1 - falI 1 2 % lemma iffI: ∀P Q. (P ⟶ Q) ⟶ (Q ⟶ P) ⟶ P = Q - split[a] % - 1 3+ - imp_eq_p 2 3 % - cpos_pp 2 3+ - imp_eq_n 2 3 % lemma iffE1: ∀P Q. P = Q ⟶ P ⟶ Q - psub 1 2 % lemma iffE2: ∀P Q. Q = P ⟶ P ⟶ Q - psubr 1 2 % lemma conj_assoc: ∀P Q R. ((P ∧ Q) ∧ R) = (P ∧ (Q ∧ R)) - iffI % - conjE1 1+ - conjE1 2+ - conjE2 2 - conjE2 1 - conjI 2 3 - conjI 1 2 % - conjE1 1+ - conjE2 1 - conjE1 2+ - conjE2 2 - conjI 1* 2 - conjI 1 2 % lemma disj_assoc: ∀P Q R. ((P ∨ Q) ∨ R) = (P ∨ (Q ∨ R)) - iffI % - disjE 1 % - disjE 1 % - disjI1 1 % - disjI1 1 - disjI2 1 % - disjI2 1 - disjI2 1 % - disjE 1 % - disjI1 1 - disjI1 1 % - disjE 1 % - disjI2 1 - disjI1 1 % - disjI2 1 % lemma uni_swap: ∀P. (∀a b. P a b) ⟶ (∀a b. P b a) - 1 % lemma not_P_eq_not_P: ∀P. ¬(P = ¬P) - notI % - split[a] % - psub 1 2+ - falI 1 2 % - psubr 1* 2+ - falI 1 2 % lemma eq_com_eq: ∀P Q. (P = Q) = (Q = P) - iffI % - eq_com 1 % - eq_com 1 % lemma eq_tru_eq_P: ∀P. (P = True) = P - iffI % - eq_truE 1 % - eq_truI 1 % lemma eq_fal_eq_not_P: ∀P. (P = False) = ¬P - iffI % - eq_falE 1 % - eq_falI 1 % lemma eq_PQQ_P: ∀P Q. (P = Q) = Q ⟶ P - notE2 % - eq_falI 2 - sub[λx. (x = b) = b] 2 1 - sub[λx. x = b, False = b, b = False] eq_com_eq 1 - sub[λx. x = b, b = False, ¬b] eq_fal_eq_not_P 1 - eq_com 1 - falI 1 not_P_eq_not_P % lemma eq_assoc: ∀P Q R. ((P = Q) = R) = (P = (Q = R)) - iffI % - iffI % - iffI % - imp_eq_p 2 3 - iffE1 1 2 % - iffE2 1* 3 - iffE1 1 2 % - subr[λx. (a = b) = x] 2 1 - eq_PQQ_P 1 % - iffI % - sub[λx. a = x, b = c, c = b] eq_com_eq 1* - eq_com 1* - sub[λx. (c = b) = x] 2 1 - eq_PQQ_P 1 % - iffI % - iffE1 1* 3 - iffE2 1 2 % - imp_eq_p 3 2 - iffE2 1 2 % lemma ind_imp_exh: ∀A B. (∀P x. P A ⟶ P B ⟶ P x) ⟶ ∀y. y = A ∨ y = B - 1[λx. x = a ∨ x = b] % - disjI1 refl % - disjI2 refl % def inj: λf. ∀a b. f a = f b ⟶ a = b lemma inj_def1: ∀f. inj f = ∀a b. f a = f b ⟶ a = b - fun_cong inj_def % def (∃) [binder]: λP. ¬∀a. ¬P a lemma eta: ∀f. (λa. f a) = f - ext % - refl % lemma exi_def: ∀P. (∃a. P a) = ¬∀a. ¬P a - fun_cong ∃_def [a] - imp_swap eq_tran 1 % - arg_cong % - eta % lemma dmrg_pc: ∀P Q. P ∧ Q ⟶ ¬(¬P ∨ ¬Q) - notI % - disjE 2 % - conjE1 1 - falI 2 1 % - conjE2 1 - falI 2 1 % lemma dmrg_nc: ∀P Q. ¬(P ∧ Q) ⟶ ¬P ∨ ¬Q - split[a] % - disjI2 % - notI % - conjI 2 3 - falI 2 1 % - disjI1 2 % lemma dmrg_pd: ∀P Q. P ∨ Q ⟶ ¬(¬P ∧ ¬Q) - cpos_pn dmrg_pc % - subr[λx. x ∨ ¬¬b] not2_eq % - subr[λx. a ∨ x] not2_eq 1 % lemma dmrg_nd: ∀P Q. ¬(P ∨ Q) ⟶ ¬P ∧ ¬Q - cpos_np dmrg_nc % - subr[λx. ¬(x ∨ ¬¬b)] not2_eq % - subr[λx. ¬(a ∨ x)] not2_eq 1 % lemma dmrg_pu: ∀P. (∀a. P a) ⟶ ¬∃a. ¬P a - imp_swap cpos_pn[∀b. a b] {1}1 % - psub exi_def[λx. ¬a x] 1 - imp_swap cpos_pp 1 % - 1 [b] - psubr not2_eq 1 % lemma dmrg_nu: ∀P. ¬(∀) P ⟶ ∃a. ¬P a - subr[λx. ¬(∀) x] eta 1 - psubr exi_def [λx. ¬a x] % - imp_swap cpos_pp 1 % - 1 [b] - psub not2_eq 1 % lemma dmrg_pe: ∀P. (∃a. P a) ⟶ ¬∀a. ¬P a - psub exi_def 1 % lemma dmrg_ne: ∀P. ¬(∃) P ⟶ ∀a. ¬P a - imp_swap cpos_pp 1 % show [a = λx. a x] sub 2 - psubr exi_def % - notI % - falI 1 2 % - ext % - refl % lemma eq_not2: ∀P. ¬¬P = P - not2_eq % lemma eta1: ∀P f. P f = (λx y. y) ((∀) P) P (λx. f x) - arg_cong % - ext % - refl % lemma exiI: ∀a P. P a ⟶ (∃) P - psubr eta1 % - notE2 % - dmrg_ne 2 - falI 1 2 % lemma exiE: ∀P Q. (∃) P ⟶ (∀b. P b ⟶ Q) ⟶ Q - psub eta1 1* - psub exi_def 1* - imp_swap cpos_np 1 % - imp_swap cpos_pp 2 % - 1 2 % lemma inj_comb_K: inj (λa b. a) - psubr inj_def1 % - fun_cong 1 % lemma inj_not_impl_inj2: ∃f. inj f ∧ ∃a. ¬inj (f a) - exiI[λx y. x] % - conjI % - inj_comb_K % - exiI[True] % - notI % - psub inj_def1 1 [True, False] refl - bool_dif 1 % lemma inj_not_impl_inj2': ¬(∀f. inj f ⟶ ∀a. inj (f a)) - notI % - 1 [λx y. x, True] - 1 inj_comb_K - psub inj_def1 1 [True, False] refl - bool_dif 1 % lemma Paa_eq_Pab: ∀P. (∀a. P a a) = (∀a b. a = b ⟶ P a b) - iffI % - 1* [b] - sub[λx. a b x] 2 1 % - 1 [b, b] refl % lemma fgaa_eq_fgab: ∀f g. (∀a. f a = g a) ⟶ (∀a b. a = b ⟶ f a ⟶ g b) - psub Paa_eq_Pab[λx y. a x = b y] {1}1* 2 - psub 1 2 % lemma fgaa_eq_ffab: ∀f g. (∀a. f a = g a) ⟶ (∀a b. a = b ⟶ f a ⟶ f b) - arg_cong 2 - psub 3 2 % lemma fgab_imp_eq_fg: ∀f g. (∀a b. a = b ⟶ f a = g b) = (f = g) - iffI % - psubr Paa_eq_Pab [λx y. a x = b y] {2}1 - ext {1}1 % - cong 1 2 % lemma uni_exi: ∀P. (∀) P ⟶ (∃) P - psub eta1 1 - exiI[undefined] % - 1 % lemma exi_uni: ∀P. (∀a b. P a = P b) ⟶ (∃) P ⟶ (∀) P - exiE 2 % - psubr eta1 % - psub 1 2 % def ∃! [binder]: λP. (∃a. P a) ∧ (∀a b. P a ⟶ P b ⟶ a = b) lemma uniq_def: ∀P. (∃!a. P a) = ((∃a. P a) ∧ (∀a b. P a ⟶ P b ⟶ a = b)) - fun_cong ∃!_def [a] - imp_swap eq_tran 1 % - arg_cong % - ext % - refl % lemma uniqI: ∀P. (∃) P ⟶ (∀a b. P a ⟶ P b ⟶ a = b) ⟶ (∃!) P - psub eta1 1* - psubr eta1 % - psubr uniq_def % - conjI 1 {2}2 % lemma uniqE': ∀P a. P a ⟶ (∀c d. P c ⟶ P d ⟶ c = d) ⟶ P = λx. a = x - ext % - iffI % - 2 1 3 % - arg_cong 3 - psub 3 1 % lemma eq_equiv_com: (=) = (λx y. y = x) - ext % - ext % - eq_com_eq % lemma uniqE: ∀P. (∃!) P ⟶ P ((THE) P) - psub eta1 1 - psub uniq_def 1 - conjE1 1+ - conjE2 1 - exiE 1 % - uniqE' 2+ {2}1+ - subr[λx. x ((THE) x), λx. b = x, a] % - 3 % - eq_com % - subr[λx. (THE y. x b y) = b] eq_equiv_com % - the % type nat 0 const 0 :: nat const Suc :: nat ⟹ nat const Suc⁻¹ :: nat ⟹ nat axiom Suc_inj1: ∀a. Suc⁻¹ (Suc a) = a axiom nat_dif: ∀n. ¬(0 = Suc n) axiom nat_ind: ∀P. P 0 ⟶ (∀n. P n ⟶ P (Suc n)) ⟶ (∀) P lemma Suc_inj: ∀a b. Suc a = Suc b ⟶ a = b - arg_cong 1 [Suc⁻¹] - eq_tran2 Suc_inj1 1 - eq_com 1 - eq_tran2 Suc_inj1 1 - eq_com 1 % def (<) [infixl 50]: λa b. ∃f. f 0 = Suc a ∧ (∀c. f (Suc c) = Suc (f c)) ∧ ∃d. f d = b def (<=) [infixl 50]: λa b. a < b ∨ a = b lemma lt_def: ∀a b. (a < b) = ∃f. f 0 = Suc a ∧ (∀c. f (Suc c) = Suc (f c)) ∧ ∃d. f d = b - fun_cong2 <_def % lemma lte_def: ∀a b. (a <= b) = (a < b ∨ a = b) - fun_cong2 <=_def % lemma lt_simp1: ∀a. 0 < Suc a - nat_ind[#..a] % - psubr lt_def % - exiI[Suc] % - conjI % - conjI % - refl % - refl % - exiI[0] % - refl % - psub lt_def 1 - psubr lt_def % - exiE 1 % - exiI[a] % - conjE1 1+ - conjE1 2+ - conjE2 2 - conjE2 1 - conjI % - conjI % - 1 % - 2 % - exiE 3 % - exiI[Suc c] % - eq_tran 2 % - arg_cong 2 % def id: λx. x lemma id_def1: ∀a. id a = a - fun_cong id_def % lemma not2_equiv_id: (λx. ¬¬x) = id - ext % - subr[λx. x = id a] not2_eq % - eq_com id_def1 % lemma dmrg_pu1: ∀P. (∀a. ¬P a) ⟶ ¬(∃a. P a) - dmrg_pu[λx. ¬a x] {1}1 - sub[λx. ¬(∃b. x (a b))] not2_equiv_id 1 - imp_swap cpos_pp 1 % - exiE[λx. a x] 1 % - exiI[b] % - psubr id_def1 % - 1 % lemma lt_simp2: ∀a. ¬(a < 0) - notI % - psub lt_def 1 - exiE[#1.10.b] 1 % - conjE1 1+ - conjE1 2+ - conjE2 2 - conjE2 1 - falI 3 % - dmrg_pu1[λx. b x = 0] % - nat_ind[λx. ¬(b x = 0)] % - notI % - eq_tran2 3 1 - falI 2 nat_dif % - notI % - eq_tran2 4 2 - falI 3 nat_dif % def pred: λa. THE b. a = Suc b lemma pred_def1: ∀a. pred a = THE b. a = Suc b - fun_cong pred_def % lemma nat_exh1: ∀a P. (a = 0 ⟶ P) ⟶ ((∃b. a = Suc b) ⟶ P) ⟶ P - nat_ind[λa. (a = 0 ⟶ b) ⟶ ((∃b. a = Suc b) ⟶ b) ⟶ b, a] % - 3 refl % - 5 % - exiI[c] % - refl % - 1 3 % - 2 3 % lemma uniq_eq: ∀a. ∃!b. b = a - uniqI[λx. x = a] % - exiI[a] % - refl % - eq_tran1 1 2 % lemma suc_uniq: ∀a b. a = Suc b ⟶ ∃!c. a = Suc c - uniqI[#.10.c] % - exiI[b] % - 1 % - eq_tran2 2 3 - Suc_inj 2 % lemma inj_def_eq: ∀f. inj f = (∀a b. (f a = f b) = (a = b)) - iffI % - psub inj_def1 1 - iffI % - 1 2 % - arg_cong 2 % - psubr inj_def1 % - psub 1 2 % lemma the1: ∀a. (THE b. a = b) = a - sub[λx. (THE y. x y) = a, λx. x = a, λx. a = x] % - ext % - eq_com_eq % - the % lemma the_inj: ∀f. inj f ⟶ ∀a. (THE b. f b = f a) = a - psub inj_def_eq 1 - sub[λx. (THE y. x y) = b, λx. x = b, λx. a x = a b] % - ext % - eq_com 1 % - the % lemma the_inj1: ∀f. inj f ⟶ ∀a. (THE b. f a = f b) = a - sub[λx. (THE y. x y) = b, λx. a x = a b, λx. a b = a x] % - ext % - eq_com_eq % - the_inj 1 % lemma suc_inj1: inj Suc - psubr inj_def1 % - Suc_inj 1 % lemma pred_suc: ∀a. pred (Suc a) = a - eq_tran pred_def1 % - the_inj1 suc_inj1 % lemma suc_pred: ∀a. ¬(a = 0) ⟶ Suc (pred a) = a - nat_exh1[a] % - falE2 2 1 % - exiE[#2.10.b] 2 % - subr[#..a] 2 % - arg_cong % - eq_tran1 pred_suc refl % lemma neq_0_exi_suc: ∀a. ¬(a = 0) = (∃b. a = Suc b) - iffI % - nat_exh1[a] % - falE2 2 1 % - 2 % - exiE[#1.10.b] 1 % - imp_swap cpos_pn 1 % - subr[#..a] 1 nat_dif % lemma lt_simp3: ∀a b. (Suc a < Suc b) = (a < b) - iffI % - psub lt_def 1 - psubr lt_def % - exiE[#1.10.c] 1 % - conjE1 1+ - conjE1 2+ - conjE2 2 - conjE2 1 - exiE[λx. c x = Suc b] 3 % - exiI[λx. pred (c x)] % - conjI % - conjI % - subr[λx. pred x = Suc a] 1 % - eq_tran pred_suc refl % - subr[λx. pred x = Suc (pred (c e))] 2+ % - eq_tran pred_suc % show [∀x. ¬(c x = 0)] - suc_pred 4 - eq_com 4 % - nat_exh1[f] % - arg_cong[c] 4 - notI % - eq_tran2 5 4 - eq_tran 4 1 - falI 3 nat_dif % - exiE 4 % - notI % - arg_cong[c] 4* - eq_tran2 5 4 - eq_tran 4 2 - falI 3 nat_dif % - exiI[d] % - subr[λx. pred x = b] 3 % - pred_suc % - psub lt_def 1 - psubr lt_def % - exiE 1 % - conjE1 1+ - conjE1 2+ - conjE2 2 - conjE2 1 - exiI[λx. Suc (c x)] % - conjI % - conjI % - arg_cong 1 % - arg_cong 2 % - exiE[#3.10.e] 3 % - exiI[d] % - arg_cong 3 % lemma not_lt_refl: ∀a. ¬(a < a) - nat_ind[#..a] % - lt_simp2 % - imp_swap cpos_pp 1 % - psub lt_simp3 1 % lemma lt_suc: ∀a. a < Suc a - nat_ind[#..a] % - lt_simp1 % - psubr lt_simp3 1 % lemma nat_inf: ∀a. ∃b. a < b - exiI[Suc a] % - lt_suc % lemma gt_imp_neq_0: ∀a b. a < b ⟶ ¬(b = 0) - notI % - sub[#1..b] 2 1 - falI 1 lt_simp2 % def lt_tran_prop: λa. ∀b c. a < b ⟶ b < c ⟶ a < c lemma lt_tran_prop_def1: ∀a. lt_tran_prop a = ∀b c. a < b ⟶ b < c ⟶ a < c - fun_cong lt_tran_prop_def % lemma neq_0_imp_gt_0: ∀a. ¬(a = 0) ⟶ 0 < a - psub neq_0_exi_suc 1 - exiE[#1.10.b] 1 % - subr[#..a] 1 % - lt_simp1 % lemma lt_tran: ∀a b c. a < b ⟶ b < c ⟶ a < c show [lt_tran_prop 0, (∀a. lt_tran_prop a ⟶ lt_tran_prop (Suc a))] - nat_ind 3 {1}4 - psub eta1 3 - psub lt_tran_prop_def1 3 1 2 % - psubr lt_tran_prop_def1 % show [¬(e = 0)] - neq_0_imp_gt_0 5 % - gt_imp_neq_0 4 % - psub lt_tran_prop_def1 4 - psubr lt_tran_prop_def1 % - gt_imp_neq_0 5+ - gt_imp_neq_0 6+ - psub neq_0_exi_suc 7* - psub neq_0_exi_suc 8* - exiE[#7.10.i] 7 % - exiE[#7.10.j] 7 % - sub[#5..e] 7+ 5* - sub[#6..e] 7 6* - sub[#6..f] 7+ 6* - subr[#..f] 7 % - psub lt_simp3 5* - psub lt_simp3 6* - psubr lt_simp3 % - 4 5 6 % lemma gt_0_neq_0: ∀a. (0 < a) = ¬(a = 0) - iffI % - notI % - sub[#1..a] 2 1 - falI 1 not_lt_refl % - neq_0_imp_gt_0 1 % lemma gt_neq_0_eq: ∀a. (∃b. b < a) = ¬(a = 0) - iffI % - exiE[#1.10.b] 1 % - gt_imp_neq_0 1 % - psub neq_0_exi_suc 1 - exiE[#1.10.b] 1 % - subr[#..a] 1 % - exiI[0] % - lt_simp1 % lemma gt_neq_0: ∀a b. b < a ⟶ ¬(a = 0) - psub gt_neq_0_eq % - exiI[b] % - 1 % lemma neq_suc: ∀a. ¬(a = Suc a) - nat_ind[#..a] % - nat_dif % - imp_swap cpos_pp 1 % - Suc_inj 1 % lemma lt_suc_ab: ∀a b. a = b ⟶ a < Suc b - sub[#..b] 1 % - lt_suc % lemma lt_lt_suc: ∀a b. a < b ⟶ a < Suc b - nat_ind[λa. ∀b. a < b ⟶ a < Suc b] % - lt_simp1 % - psubr lt_simp3 % - gt_neq_0 3+ - psub neq_0_exi_suc 4 - exiE[#4.10.f] 4 % - sub[#3..d] 4+ 3* - subr[#..d] 4 % - psub lt_simp3 3 - 2 3 % - 1 % lemma gt_exi_suc: ∀a b. a < b ⟶ ∃c. b = Suc c - gt_neq_0 1 - psub neq_0_exi_suc 1 % lemma suc_lt_lt: ∀a b. Suc a < b ⟶ a < b - nat_exh1[a] % - subr[#..a] 2 % - gt_neq_0 1 - psub neq_0_exi_suc 1 - exiE 1 % - subr[#..b] 1 % - lt_simp1 % - exiE[#2.10.c] 2 % - gt_exi_suc 1+ - exiE[#3.10.d] 3 % - sub[#1..b] 3+ 1* - subr[#..b] 3 % - psub lt_simp3 1* - lt_lt_suc 1 % lemma lt_exh: ∀a b. (a < b) = (¬(b = 0) ∧ (a = 0 ∨ pred a < pred b)) - iffI % - conjI % - gt_neq_0 1 % - nat_exh1[a] % - disjI1 2 % - gt_exi_suc 1+ - exiE[#2.10.c] 2 % - exiE[#2.10.d] 2 % - sub[#1..a] 2+ 1+ - sub[#4..b] 3+ 4 - psub lt_simp3 4 show [pred a = c, pred b = d] show [pred a < pred b] - disjI2 7 % - subr[#4..c] 5 4* - subr[#4..d] 5 4 % - subr[#..a] 2 % - pred_suc % - subr[#..b] 3 % - pred_suc % - conjE1 1+ - conjE2 1 - psub neq_0_exi_suc 1* - exiE[#1.10.c] 1 % - sub[#1..b] 2+ 1* - subr[#..b] 2 % - sub[λx. a = 0 ∨ pred a < x] pred_suc 1 - disjE 1 % - subr[#..a] 1 % - lt_simp1 % - nat_exh1[a] % - subr[#..a] 2 % - lt_simp1 % - exiE 2 % - sub[#1..a] 2+ 1* - subr[#..a] 2 % - sub[λx. x < c] pred_suc 1 - psubr lt_simp3 1 % lemma suc_inj_eq: ∀a b. (Suc a = Suc b) = (a = b) - iffI % - Suc_inj 1 % - arg_cong 1 % lemma exiE1: ∀P Q. (∃b. Q b) ⟶ (∀c. Q c ⟶ P) ⟶ P - exiE[#1.10.c] 1 % - 1 2 % lemma inj_suc: inj Suc - suc_inj1 % lemma pred_eq_0: ∀a. pred a = 0 ⟶ a = 0 ∨ a = Suc 0 - nat_ind[λa. pred a = 0 ⟶ a = 0 ∨ a = Suc 0] % - disjI1 refl % - eq_tran2 pred_suc 3 - arg_cong 3 - disjI2 3 % - 1 % lemma suc_eq: ∀a b. (Suc a = Suc b) = (a = b) - iffI % - Suc_inj 1 % - arg_cong 1 % lemma lt_suc_lte: ∀a b. a < b ⟶ Suc a <= b - psubr lte_def % - gt_exi_suc 1+ - exiE[#2.10.c] 2 % - sub[#1..b] 2+ 1* - subr[#..b] 2 % - subr[λx. x ∨ Suc a = Suc c] lt_simp3 % - subr[λx. a < c ∨ x] suc_eq % - nat_ind[λa. ∀c. a < Suc c ⟶ a < c ∨ a = c] % - nat_exh1[b] % - eq_com 3 - disjI2 3 % - exiE 3 % show [0 < b] - disjI1 4 % - subr[#..b] 3 % - lt_simp1 % - psub lt_simp3 3 - gt_exi_suc 3+ - exiE 4 % - sub[#3..d] 4+ 3* - subr[#..d] 4 % - subr[λx. x ∨ Suc b = Suc e] lt_simp3 % - subr[λx. b < e ∨ x] suc_eq % - 2 3 % - 1 % lemma lt_not_refl: ∀a. ¬(a < a) - not_lt_refl % lemma eq_imp_not_lt: ∀a b. a = b ⟶ ¬(a < b) - sub[#..b] 1 lt_not_refl % lemma lt_imp_neq: ∀a b. a < b ⟶ ¬(a = b) - cpos_pn eq_imp_not_lt 1 % lemma lt_imp_not_gt: ∀a b. a < b ⟶ ¬(b < a) - notI % - lt_tran 1 2 - falI 1 lt_not_refl % lemma gte_0: ∀a. 0 <= a - psubr lte_def % - nat_exh1[a] % - eq_com 1 - disjI2 1 % - exiE[#1.10.b] 1 % - subr[#..a] 1 % - disjI1 lt_simp1 % lemma lt_exh_suc: ∀a b. (a < b) = (¬(b = 0) ∧ (a = 0 ∨ Suc a < Suc b)) - iffI % - conjI % - gt_neq_0 1 % - psubr lt_simp3 1 - disjI2 1 % - conjE1 1+ - conjE2 1 - sub[λx. a = 0 ∨ x] lt_simp3 2 - disjE 2 % - psubr lt_exh % - conjI % - 1 % - disjI1 2 % - 2 % lemma nlt_ngt_imp_eq: ∀a b. ¬(a < b) ⟶ ¬(b < a) ⟶ a = b - nat_ind[λa. ∀b. ¬(a < b) ⟶ ¬(b < a) ⟶ a = b] % del 1 2 4 - notE2 % - cpos_pp eq_com 2 - psub neq_0_exi_suc 2 - exiE 2 % - sub[#1..c] 2 1 - falI lt_simp1 1 % del 1 2 - nat_exh1[d] % - sub[#3..d] 4 3 - falE2 lt_simp1 3 % - exiE 4 % - sub[#2..d] 4+ 2* - psubr lt_simp3 - cpos_pp 5+ 2* - sub[#3..d] 4+ 3* - cpos_pp 5 3* - 1* 2 3 - subr[#..d] 2 % - arg_cong 1 % - 1 % - 2 % lemma disj_imp: ∀P Q. (P ∨ Q) = (¬P ⟶ Q) - iffI % - disjE 1 % - falE2 2 1 % - 2 % - split[a] % - disjI1 2 % - 1 2 - disjI2 1 % lemma lt_or_gt_or_eq: ∀a b. a < b ∨ b < a ∨ a = b - psubr disj_imp % - dmrg_nd 1 - conjE1 1+ - conjE2 1 - nlt_ngt_imp_eq 1 2 % lemma cpos2_pn: ∀P Q. (P ⟶ ¬¬Q) ⟶ (P ⟶ Q) - 1 2 - notE 1 % lemma cpos2_np: ∀P Q. (¬¬P ⟶ Q) ⟶ (P ⟶ Q) - notI2 2 - 1 2 % lemma cpos2_nn: ∀P Q. (¬¬P ⟶ ¬¬Q) ⟶ (P ⟶ Q) - notI2 2 - 1 2 - notE 1 % lemma conj_imp_npp: ∀P Q. ¬(P ∧ Q) ⟶ P ⟶ ¬ Q - notI % - conjI 2 3 - falI 2 1 % lemma conj_imp_npn: ∀P Q. ¬(P ∧ ¬Q) ⟶ P ⟶ Q - notE2 % - conjI 2 3 - falI 2 1 % lemma lt_gt_fal: ∀a b. a < b ⟶ b < a ⟶ False - lt_imp_not_gt 1* - falI 2 1 % lemma lt_trich: ∀a b. (a < b ∧ ¬(b < a) ∧ ¬(a = b)) ∨ (¬(a < b) ∧ b < a ∧ ¬(a = b)) ∨ (¬(a < b) ∧ ¬(b < a) ∧ a = b) - psubr disj_imp % - dmrg_nd 1 - conjE1 1+ - conjE2 1 - conj_imp_npn 1* - conj_imp_npn 2* - conjI % - conjI % del 2 - notI % - lt_imp_not_gt 2+ - lt_imp_neq 2+ - conjI 2* 3 - 1* 2 - falI 1 2 % del 1 - notI % - lt_imp_not_gt 2+ - lt_imp_neq 2+ - conjI 3 2* - 1* 2 - eq_com 1* - falI 1 2 % - notE2 % - cpos_pp 1* 3+ - conj_imp_npn 1* - cpos_pp 2* 3+ - conj_imp_npp 2* - split[a < b] % - 1* 4+ - lt_gt_fal 1 4 % - 2* 4 - cpos_pp 1* 2+ - nlt_ngt_imp_eq 1 2 - falI 2 1 % type pair 2 const Pair :: 'a ⟹ 'b ⟹ pair 'a 'b const Pair⁻¹_1 :: pair 'a 'b ⟹ 'a const Pair⁻¹_2 :: pair 'a 'b ⟹ 'b axiom Pair_inj1: ∀a b. Pair⁻¹_1 (Pair a b) = a axiom Pair_inj2: ∀a b. Pair⁻¹_2 (Pair a b) = b axiom pair_ind: ∀P. (∀a b. P (Pair a b)) ⟶ (∀) P def fst: THE F. ∀a b. F (Pair a b) = a def snd: THE F. ∀a b. F (Pair a b) = b lemma theI: ∀P a. P a ⟶ (∀b. P b ⟶ b = a) ⟶ (THE) P = a show [∃!x. a x] - uniqE[#3.10.d] 3 show [a ((THE) a)] - 2 4 % - imp_swap psub 3 % - arg_cong % - arg_cong % - ext % - refl % - uniqI[#.10.d] % - exiI[b] % - 1 % - 2+ 3* - 2 4 - eq_tran1 2 3 % lemma eq_tran': ∀a b c. c = a ⟶ c = b ⟶ b = a - eq_tran2 1 2 - eq_com 1 % lemma tran': ∀a b c. c = a ⟶ c = b ⟶ b = a - eq_tran' 1 2 % lemma Pair_inj: ∀a b c d. Pair a b = Pair c d ⟶ a = c ∧ b = d - conjI % - arg_cong 1 [Pair⁻¹_1] - tran' Pair_inj1 1 - tran' Pair_inj1 1 % - arg_cong 1 [Pair⁻¹_2] - tran' Pair_inj2 1 - tran' Pair_inj2 1 % lemma fst_simp: ∀a b. fst (Pair a b) = a show [∃!F. ∀a b. F (Pair a b) = a] - uniqE[#1.10.c] 1 - subr[#..fst] fst_def % - 1 % - uniqI % - exiI[λp. THE a. ∃b. (λx y. y) (a = b) (p = Pair a b)] % - theI % - exiI[b] % - refl % - exiE 1 % - Pair_inj 1 - conjE1 1 - eq_com 1 % - ext % - pair_ind[#..c] % - eq_tran1 1 % - eq_tran 1 refl % lemma snd_simp: ∀a b. snd (Pair a b) = b show [∃!F. ∀a b. F (Pair a b) = b] - uniqE[#1.10.c] 1 - subr[#..snd] snd_def % - 1 % - uniqI % - exiI[λp. THE y. ∃x. (λx y. y) (x = y) (p = Pair x y)] % - theI % - exiI[a] % - refl % - exiE 1 % - Pair_inj 1 - conjE2 1 - eq_com 1 % - ext % - pair_ind[#..c] % - eq_tran1 1 % - eq_tran 1 refl % def if: THE F. ∀a b. F True a b = a ∧ F False a b = b lemma dmrg_pe1: ∀P. (∃a. ¬P a) ⟶ ¬(∀a. P a) - notI % - exiE[#1.10.b] 1 % - falI 1 2 % type unit 0 const Unit :: unit axiom unit_ind: ∀P. P Unit ⟶ (∀) P lemma not_the_imp_p: ¬(∀P a. (THE a. P a) = a ⟶ P a) - dmrg_pe1[#.110.a] % - exiI[λx. False] % - dmrg_pe1[#.110.a] % - exiI[Unit] % - notI % show [(THE a. False) = Unit] - 1 2 % - unit_ind[λx. x = Unit] refl % lemma if_simps: ∀a b. if True a b = a ∧ if False a b = b show [∃!F. ∀a b. F True a b = a ∧ F False a b = b] - uniqE[#1.10.c] 1 - subr[#..if] if_def % - conjI % - conjE1 1 % - conjE2 1 % - uniqI % - exiI[λP a b. THE x. (P ⟶ x = a) ∧ (¬P ⟶ x = b)] % - conjI % - theI % - conjI % - refl % - falE2 true 1 % - conjE1 1 - 1 true % - theI % - conjI % - falE 1 % - refl % - conjE2 1 - 1 nfalse % - ext % - ext % - ext % - 1*[d, e] - 2*[d, e] - bool_exh[c] % - subr[#..c] 3 % - conjE1 1* - conjE1 2* - eq_tran1 1 2 % - subr[#..c] 3 % - conjE2 1* - conjE2 2* - eq_tran1 1 2 % lemma if_simp1: ∀a b. if True a b = a - conjE1 if_simps % lemma if_simp2: ∀a b. if False a b = b - conjE2 if_simps % def nat_fold: THE F. ∀z f n. F z f 0 = z ∧ F z f (Suc n) = f (F z f n) lemma uni_eq_fun_true: (∀) = (=) (λx. True) - ext % - iffI % - eta[a] - subr[#1..a] 2 1 - eq_com % - ext % - eq_truI 1 % - sub[#..a] 1 % - true % lemma uniqE2: ∀P a b. (∃!) P ⟶ P a ⟶ P b ⟶ a = b show [a = λx. a x] sub 4 - psub uniq_def 1* - conjE2 1* - 1 2 3 % - ext % - refl % lemma uniq2fun: ∀P. (∀a. (∃!) (P a)) ⟶ ∃!f. ∀a b. (f a = b) = (P a b) show [(∀b. (∃!) (a b)) = (∀b. ∃!c. a b c)] - psub 2 {1}1 - uniqI[#.10.d] % - exiI[λx. THE y. a x y] % - 1+*[b] - uniqE[#1.10.d] 2* - iffI % - sub[#..c] 3 2 % - uniqE2 1 2 3 % - ext % - 1*[d] - 2*[d] - 3*[d] - uniqE[#1.10.e] 1* - psubr 2* 1+ - psubr 3* 1 - eq_tran1 1 2 % del 1 - arg_cong % - ext % - arg_cong % - ext % - refl % lemma lte_refl: ∀a. a <= a - psubr lte_def % - disjI2 refl % lemma lte_0_eq_0: ∀a. (a <= 0) = (a = 0) - iffI % - psub lte_def 1 - disjE 1 % - falE2 1 lt_simp2 % - 1 % - subr[#..a] 1 lte_refl % lemma lte_uniq_fun: ∀P. (∀N. ∃!F. ∀n. n <= N ⟶ P (F n)) ⟶ ∃!F. ∀n. (λx y. y) (n <= n) (P (F n)) - uniqI[#.10.e] % - exiI[λN. (THE F. ∀n. n <= N ⟶ a (F n)) N] % - 1[b] - uniqE[#1.10.c] 1 lte_refl % - ext % - 1*[d] - uniqE2[#1.10.e] 1* [b, c] show [∀e. e <= d ⟶ a (b e), ∀f. f <= d ⟶ a (c f)] - 1* {1}4 {1}5 - fun_cong 1 % - 2 % - 3 % lemma lt_imp_lte: ∀a b. a < b ⟶ a <= b - psubr lte_def % - disjI1 1 % lemma eq_imp_lte: ∀a b. a = b ⟶ a <= b - sub[#..b] 1 lte_refl % lemma lte_suc2: ∀a b. (Suc a <= Suc b) = (a <= b) - iffI % - psub lte_def 1 - disjE 1 % - psub lt_simp3 1 - lt_imp_lte 1 % - Suc_inj 1 - eq_imp_lte 1 % - psub lte_def 1 - disjE 1 % - psubr lt_simp3 1 - lt_imp_lte 1 % - arg_cong 1 [Suc] - eq_imp_lte 1 % lemma lt_suc_lte1: ∀a b. a < Suc b ⟶ a <= b - lt_suc_lte 1 - psub lte_suc2 1 % lemma nat_ind_lte: ∀P. P 0 ⟶ (∀N. (∀n. n <= N ⟶ P n) ⟶ P (Suc N)) ⟶ ∀n. P n show [∀N n. n <= N ⟶ a n] - 3 lte_refl % - nat_ind[λN. ∀n. n <= N ⟶ a n] [d, d] % del 3 - psub lte_0_eq_0 3 - subr 3 1 % del 3 - 2+ {1}3+ - psub lte_def 4* - disjE 4 % - lt_suc_lte1 5 - 3 5 % - subr 5 4 % - lte_refl % lemma not_suc_lt: ∀a. ¬(Suc a < a) - notI % - lt_lt_suc 1 - falI 1 lt_not_refl % lemma not_suc_lte: ∀a. ¬(Suc a <= a) - notI % - psub lte_def 1 - disjE 1 % - falI 1 not_suc_lt % - eq_com 1 - falI 1 neq_suc % lemma not_lte_exi_ind: ¬(∀P. (∀N. ∃n. n <= N ⟶ P n) ⟶ ∀n. P n) - dmrg_pe1[#.110.a] % - exiI[λx. False] % - notI % - 1 % - exiI[Suc a] % - falI 1 not_suc_lte % lemma quant_eq1: ∀P Q R. (∀a. P a ⟶ Q a) ⟶ (∀a. Q a ⟶ P a) ⟶ R P = R Q - iffI 1 2 - ext {1}1 - arg_cong 1 % lemma quant_eq: ∀P Q R. R P ⟶ (∀a. P a ⟶ Q a) ⟶ (∀a. Q a ⟶ P a) ⟶ R Q - quant_eq1 {1}2 {1}3 [c] - psub 2 1 % lemma suc_lte_lt: ∀a b. Suc a <= b ⟶ a < b - psub lte_def 1 - disjE 1 % - suc_lt_lt 1 % - eq_com 1 sub 1 - lt_suc % lemma lt_neq_pred_lt_suc: ∀a b. a < b ⟶ ¬(b = Suc a) ⟶ a < Suc b - lt_suc_lte 1* - suc_lte_lt 1* - lt_lt_suc 1 % lemma disj_not: ∀P Q. P ∨ Q ⟶ P ∨ (¬P ∧ Q) - disjE 1 % - disjI1 1 % - split[a] % - disjI1 2 % - conjI 2 1 - disjI2 1 % lemma sub1: ∀P a b. P a ⟶ a = b ⟶ P b - sub 2 1 % lemma theE: ∀P a. a = (THE) P ⟶ (∃!) P ⟶ P a - psub eta1 2 - uniqE 2 sub 1 - sub1 1 % - arg_cong % - ext % - refl % lemma lte_suc: ∀a. a <= Suc a - lt_imp_lte % - lt_suc % lemma if_tru: ∀P Q a b. P (if Q a b) ⟶ Q ⟶ P a - eq_truI 2 sub 2 - sub1 1 % - if_simp1 % lemma if_fal: ∀P Q a b. P (if Q a b) ⟶ ¬Q ⟶ P b - eq_falI 2 sub 2 - sub1 1 % - if_simp2 % lemma if_tru1: ∀P a b. if P a b ⟶ P ⟶ a - if_tru[λx. x] 1 2 % lemma if_fal1: ∀P a b. if P a b ⟶ ¬P ⟶ b - if_fal[λx. x] 1 2 % lemma lte_lte_suc: ∀a b. a <= b ⟶ a <= Suc b - psub lte_def 1 - disjE 1 % - lt_lt_suc 1 - lt_imp_lte 1 % sub 1 - lte_suc % lemma lte_suc_suc: ∀a. a <= Suc (Suc a) - lte_lte_suc % - lte_suc % lemma suc_lte_neq_0: ∀a b. Suc a <= b ⟶ ¬(b = 0) - psub lte_def 1 - disjE 1 % - gt_neq_0 1 % - eq_com 1 - notI % sub 2 - falI 1 nat_dif % lemma if_tru_r: ∀P Q R. P ⟶ Q ⟶ if P Q R - eq_truI 1* sub 1 - psubr if_simp1 1 % lemma if_fal_r: ∀P Q R. ¬P ⟶ R ⟶ if P Q R - eq_falI 1* sub 1 - psubr if_simp2 1 % lemma if_tru_t: ∀P a b. P ⟶ if P a b = a - eq_truI 1 sub 1 - if_simp1 % lemma if_fal_t: ∀P a b. ¬P ⟶ if P a b = b - eq_falI 1 sub 1 - if_simp2 % lemma not_suc_lte_0: ∀a. ¬(Suc a <= 0) - notI % - psub lte_0_eq_0 1 - eq_com 1 - falI 1 nat_dif % lemma suc_neq_0: ∀a. ¬(Suc a = 0) - notI % - eq_com 1 - falI 1 nat_dif % lemma not_all_exi_dif: ¬(∀a. ∃b. ¬(b = a)) - notI % - 1[Unit] - dmrg_pe1[λx. x = Unit] 1 - imp_swap cpos_np 1 % del 1 - unit_ind[#..a] refl % def (∈) [infixl 52]: λx S. (λx y. y) (S = λx. True) S x lemma in_def: ∀S a. (a ∈ S) = (S a) - ∈_def - fun_cong2 1 % def ∅: λa. False lemma emp_def: ∅ = λa. False - ∅_def % lemma emp_def1: ∀a. ∅ a = False - subr[#..∅] emp_def refl % lemma not_in_emp: ∀a. ¬(a ∈ ∅) - notI % - psub in_def 1 - psub emp_def1 1 % def univ: λa. True lemma univ_def1: ∀a. univ a = True - subr[#..univ] univ_def refl % lemma emp_neq_univ: ¬(∅ = univ) - notI % - fun_cong 1 [undefined] - eq_tran2 emp_def1 1 - eq_com 1 - eq_tran2 univ_def1 1 - bool_dif 1 % lemma all_in_univ: ∀a. a ∈ univ - psubr in_def % - psubr univ_def1 true % lemma emp_in_univ: ∅ ∈ univ - all_in_univ % lemma not_univ_in_emp: ¬(univ ∈ ∅) - not_in_emp % lemma nemp_exi_in: ∀S. ¬(S = ∅) = (∃a. a ∈ S) - iffI % - imp_swap cpos_np 1 % - dmrg_ne 1 - imp_swap eq_tran1 emp_def % - ext % - 1[b] - eq_falI % - imp_swap cpos_pp 1 % - psubr in_def 1 % - notI % sub 2 - exiE 1 % - falI 1 not_in_emp % lemma cposr_pp: ∀P Q. P ⟶ (¬Q ⟶ ¬P) ⟶ Q - cpos_nn 2 1 % lemma cposr_pn: ∀P Q. P ⟶ (Q ⟶ ¬P) ⟶ ¬Q - cpos_pn 2 1 % lemma cposr_np: ∀P Q. ¬P ⟶ (¬Q ⟶ P) ⟶ Q - cpos_np 2 1 % lemma cposr_nn: ∀P Q. ¬P ⟶ (Q ⟶ P) ⟶ ¬Q - cpos_pp 2 1 % lemma if_tru_t1: ∀P a b c. if P a b = c ⟶ P ⟶ a = c - eq_truI 2 sub 2 - eq_tran2 if_simp1 1 % lemma if_fal_t1: ∀P a b c. if P a b = c ⟶ ¬P ⟶ b = c - eq_falI 2 sub 2 - eq_tran2 if_simp2 1 % lemma if_tru_t2: ∀P a b c. if P a b = c ⟶ P ⟶ c = a - if_tru_t1 1 2 - eq_com 1 % lemma if_fal_t2: ∀P a b c. if P a b = c ⟶ ¬P ⟶ c = b - if_fal_t1 1 2 - eq_com 1 % lemma if_tru_r1: ∀P a b c. P ⟶ a = c ⟶ if P a b = c sub 2 - if_tru_t 1 % lemma if_fal_r1: ∀P a b c. ¬P ⟶ b = c ⟶ if P a b = c sub 2 - if_fal_t 1 % lemma if_tru_r2: ∀P a b c. P ⟶ c = a ⟶ if P a b = c - eq_com 2 - if_tru_r1 1 2 % lemma if_fal_r2: ∀P a b c. ¬P ⟶ c = b ⟶ if P a b = c - eq_com 2 - if_fal_r1 1 2 % lemma if_args_eq: ∀P a. if P a a = a - split[a] % - if_tru_t 1 % - if_fal_t 1 % lemma if_eq_if: ∀P a b c d. (P ⟶ a = c) ⟶ (¬P ⟶ b = d) ⟶ if P a b = if P c d - split[a] % del 2 - 1* 2+ - if_tru_r2 2+ % - if_tru_r2 2 1 % del 1 - 1* 2+ - if_fal_r2 2+ % - if_fal_r2 2 1 % lemma if_eq: ∀P a b c. (P ⟶ a = c) ⟶ (¬P ⟶ b = c) ⟶ if P a b = c - split[a] % del 2 - 1* 2+ - if_tru_r1 2 1 % del 1 - 1* 2+ - if_fal_r1 2 1 % lemma ext1: ∀P f. P (λx. f x) = P f - arg_cong % - ext % - refl % lemma uniq_def1: ∀P. (∃!) P = ((∃) P ∧ (∀ a b. P a ⟶ P b ⟶ a = b)) - sub[#..a] eta uniq_def % lemma if_tru_eq: ∀P a b c. if P a b = c ⟶ P ⟶ a = c - if_tru[λx. x = d] 1 2 % lemma if_fal_eq: ∀P a b c. if P a b = c ⟶ ¬P ⟶ b = c - if_fal[λx. x = d] 1 2 % lemma if_tru_eq1: ∀P a b c. if P a b = c ⟶ P ⟶ c = a - if_tru_eq 1 2 - eq_com 1 % lemma if_fal_eq1: ∀P a b c. if P a b = c ⟶ ¬P ⟶ c = b - if_fal_eq 1 2 - eq_com 1 % lemma eq_tran3: ∀a b c d. a = b ⟶ c = d ⟶ b = d ⟶ a = c sub 1 sub 2 - eq_com 1 % lemma disjE1: ∀P Q. P ∨ Q ⟶ ¬P ⟶ Q - disjE 1 % - falE2 2 1 % - 2 % lemma disjE2: ∀P Q. P ∨ Q ⟶ ¬Q ⟶ P - disjE 1 % - 2 % - falE2 2 1 % lemma neq0: ∀P a. ¬(a = 0) ⟶ (∀b. a = Suc b ⟶ P) ⟶ P - psub neq_0_exi_suc 1* - exiE 1* % sub 1 - 1 refl % lemma cmp: ∀a b P. (a < b ⟶ P) ⟶ (b < a ⟶ P) ⟶ (a = b ⟶ P) ⟶ P - lt_or_gt_or_eq [a, b] - disjE 4 % - disjE 4 % - 1 4 % - 2 4 % - 3 4 % lemma uniqI1': ∀a P. P a ⟶ (∀b. P b = (b = a)) ⟶ (∃!) P - uniqI % - exiI 1 % - psub 2+ 3* - psub 2+ 4* - eq_tran1 3 4 % lemma uniqI1: ∀a P. P a ⟶ (∀b. P a ⟶ P b = (b = a)) ⟶ (∃!) P - 2* 1+ - uniqI1' 1 {1}2 % lemma gte_suc_neq_0: ∀a b. Suc a <= b ⟶ ¬(b = 0) - notI % sub 2 - falI 1 not_suc_lte_0 % lemma suc_not_lte_0: ∀a. ¬(Suc a <= 0) - not_suc_lte_0 % lemma neq_com: ∀a b. ¬(a = b) ⟶ ¬(b = a) - cposr_nn 1 % - eq_com 1 % lemma lt_imp_neq1: ∀a b. a < b ⟶ ¬(b = a) - lt_imp_neq 1 - neq_com 1 % lemma lt_imp_not_gte: ∀a b. a < b ⟶ ¬(b <= a) - notI % - psub lte_def 2 - disjE 2 % - lt_gt_fal 1 2 % sub 2 - falI 1 not_lt_refl % lemma nat_fold_simps: ∀z f n. nat_fold z f 0 = z ∧ nat_fold z f (Suc n) = f (nat_fold z f n) let C: λF. ∀z f n. F z f 0 = z ∧ F z f (Suc n) = f (F z f n) - sub[λP. P nat_fold] 1+ % - subr nat_fold_def % - sub[λF. C ((THE) F)] 1+ % - uniqE % let K: λF z f n. if (n = 0) z (f (F z f (pred n))) let P: λF. ∀z f n. F z f n = K F z f n show [C = P] sub 4 del 1 let P': λN F. ∀z f n. F z f n = if (n <= N) (K F z f n) undefined - let FF: λN. (THE) (P' N) show [∀N. (∃!) (P' N)] show [∀N. P' N (FF N)] show[∀N z f n. n <= N ⟶ FF N z f n = FF n z f n] - - psub uniq_def1 5+ - conjE1 8+ - conjE2 8 - - uniqI1[λz f n. FF n z f n] % - sub 2 ren a z ren b f ren c N - sub 1 - nat_ind[#..N] % - eq_com % - if_tru_r2 refl % - 4+[0] sub 1 - eq_tran1 7 % - eq_com % - if_tru_r1 lte_refl % - if_tru_r1 refl refl % ren a N - subr[λx. FF (Suc N) z f (Suc N) = if (Suc N = 0) z (f (FF x z f x))] pred_suc % - eq_com % - if_fal_r2 suc_neq_0 % show [∀N z f. FF (Suc N) z f N = FF N z f N] - 9[N, z, f] - 4+[Suc N] sub 1 - 9[z, f, Suc N] - eq_tran 9 % - if_tru_r1 lte_refl % - if_fal_r1 suc_neq_0 % - arg_cong % - subr[λx. FF (Suc N) z f x = FF N z f N] pred_suc 8 % del 8 ren a N ren b z ren c f - 5 lte_suc % - let F₀: λz f n. FF n z f n - subr 11+ 10 ren a F₁ - iffI % - - ext % - ext % - ext % ren a z ren b f ren c N - - nat_ind[λn. ∀N z f. n <= N ⟶ F₁ z f n = FF N z f n] % del 11 sub 2 - eq_tran 10+ % - eq_com % sub 2 - eq_tran 4+ % sub 1 - if_tru_r1 gte_0 % - if_tru_r2 refl % - if_tru_r1 refl refl % - ren a n ren b N ren c z ren d f sub 2 - eq_tran 11+ % sub 1 - if_fal_r2 suc_neq_0 % sub 1 - eq_tran 3+ % - if_tru_r1 11+ % - if_fal_r2 suc_neq_0 % - arg_cong % - subr[λx. F₁ z f x = FF N z f x] pred_suc % - lte_lte_suc 11 - psub lte_suc2 11 - 10 11 % - lte_refl % - sub 12 sub 2 ren a z ren b f ren c N sub 2 - eq_tran 4+ % - if_tru_r1 lte_refl % sub 1 - if_eq_if % - refl % - neq0 9 % sub 9 ren a N - arg_cong % - subr[λx. FF (Suc N) z f x = FF x z f x] pred_suc % - 4 lte_suc % - ren a N ren b z ren c f ren d n - nat_ind[λn. ∀N z f. n <= N ⟶ FF N z f n = FF n z f n] % del 7 del 7 ren a N ren b z ren c f sub 3 - eq_tran 5+ % - if_tru_r1 gte_0 % sub 1 - if_tru_r2 refl % - eq_tran 4+ % - if_tru_r1 lte_refl % - if_tru_r1 refl refl % del 7 ren a n ren b N ren c z ren d f sub 3 - eq_tran 5+ % - if_tru_r1 7+ % sub 1 - if_fal_r2 suc_neq_0 % - eq_tran 4+ % - if_tru_r1 lte_refl % - if_fal_r1 suc_neq_0 % - arg_cong % - subr[λx. FF (Suc n) z f x = FF N z f x] pred_suc % - suc_lte_neq_0 6+ - psub neq_0_exi_suc 7 - exiE 7 % sub 7 ren a N - psub lte_suc2 6 - lte_lte_suc 6 - 5+ lte_suc [z, f] - 5+ 6 [z, f] - eq_tran1 6 7 % - 7 % - ren a N - 5[N] - fun_cong 4* [N] - theE 4 5 % - ren a N - nat_ind[#..N] % - - uniqI1[λz f n. if (n = 0) z undefined] % sub 3 ren a z ren b f ren c n - split[n = 0] % sub 4 - if_tru_r2 refl % - if_tru_r1 lte_refl % sub 1 - if_tru_r1 refl refl % - neq0 4 % sub 4 ren a n - if_fal_r2 suc_neq_0 % - if_fal_r1 suc_not_lte_0 refl % - ren a F - iffI % - ext % - ext % - ext % ren a z ren b f ren c N sub 3 - eq_tran 5+ % - 4+[z, f, N] - imp_swap eq_tran1 6 % - if_eq_if % - psub lte_0_eq_0 6 sub 6 sub 1 - if_eq_if % - refl % - falE2 refl 5 % - refl % sub 6 - 5 % - ren a N let F₀: (THE) (P' N) - theE 6+ 5+ let F₁: λz f n. if (n = Suc N) (f (F₀ z f N)) (F₀ z f n) - - uniqI1[F₁] % - sub 3 ren a z ren b f ren c n sub 7 - - cmp[n, Suc N] % - lt_imp_neq 7+ - if_fal_r2 8+ % - lt_imp_lte 7+ - if_tru_r2 9+ % sub 1 - eq_tran 5+ % - lt_suc_lte 6+ - psub lte_suc2 9+ - if_tru_r1 10+ % - if_eq_if % - refl % - arg_cong % - neq0 11 % sub 11 ren a n - eq_com % - if_fal_r2 % - subr[λx. ¬(x = Suc N)] pred_suc % - suc_lt_lt 6+ - lt_imp_neq 11 % - refl % - lt_imp_neq1 7+ - if_fal_r2 8+ % - if_fal_r2 % - cposr_nn 8 % - psub lte_def 8 - lt_imp_not_gt 7* - disjE1 8 7 % - eq_tran 6+ % - suc_lt_lt 7+ - lt_imp_not_gte 9+ - if_fal_r1 10 refl % sub 7 - if_tru_r2 refl % - if_tru_r1 lte_refl % sub 1 - if_fal_r1 suc_neq_0 % - arg_cong % - if_fal_r2 % - subr[λx. ¬(x = Suc N)] pred_suc % - neq_suc % - subr[λx. F₀ z f N = F₀ z f x] pred_suc refl % - ren a F₂ - iffI % - - ext % - ext % - ext % ren a z ren b f ren c n - - nat_ind[#..n] % - sub 3 - eq_tran 9+ % - if_tru_r2 gte_0 % - eq_tran 8+ % - if_tru_r2 gte_0 % sub 1 - if_eq_if % - refl % - falE2 refl 9 % - ren a n sub 3 - eq_tran 9+ % - eq_com % - eq_tran 8+ % - if_eq_if % sub 1 - if_eq_if % - refl % del 11 - arg_cong % - eq_com % - subr[λx. F₂ z f x = F₁ z f x] pred_suc % - 9 % - refl % sub 10 - 9 % - - ext % ren a F sub 1 sub 2 - iffI % - ren a z ren b f ren c n - split[n = 0] % sub 3 - conjE1 2 - eq_tran 2 % - eq_com % sub 1 - if_tru_r1 refl refl % - neq0 3 % sub 3 ren a n - conjE2 2 - eq_tran 2 % - eq_com % sub 1 - if_fal_r1 suc_neq_0 % - arg_cong % - subr[λx. F z f x = F z f n] pred_suc refl % - ren a z ren b f ren c n - conjI % - eq_tran 2 % sub 1 - if_tru_r1 refl refl % - eq_tran 2 % sub 1 - if_fal_r1 suc_neq_0 % - arg_cong % - subr[λx. F z f x = F z f n] pred_suc refl % lemma nat_fold_simp1: ∀z f. nat_fold z f 0 = z - conjE1 nat_fold_simps % lemma nat_fold_simp2: ∀z f n. nat_fold z f (Suc n) = f (nat_fold z f n) - conjE2 nat_fold_simps % lemma com: ∀a b. a = b ⟶ b = a - eq_com 1 % lemma tran: ∀a b c. a = b ⟶ a = c ⟶ b = c - eq_tran2 1 2 % lemma tran1: ∀a b c. a = b ⟶ a = c ⟶ c = b - tran 1 2 - com 1 % lemma tranr: ∀a b c. a = b ⟶ b = c ⟶ a = c - eq_tran 1 2 % lemma tranr1: ∀a b c. a = b ⟶ c = b ⟶ a = c - com 2 - tranr 1 2 % def (+) [infixl 55]: λa b. nat_fold a Suc b lemma add_def: ∀a b. a + b = nat_fold a Suc b - fun_cong2 +_def % lemma add_simp1: ∀a b. a + 0 = a - tranr add_def % - tranr nat_fold_simp1 refl % lemma add_simp2: ∀a b. a + Suc b = Suc (a + b) - tranr add_def % - tranr nat_fold_simp2 % - arg_cong % - com % - tranr add_def refl % lemma add0: ∀a. a + 0 = a - add_simp1 % lemma add0r: ∀a. 0 + a = a - nat_ind[#..a] % - add0 % ren b a - tranr add_simp2 % - arg_cong 1 % lemma suc_add: ∀a b. Suc a + b = Suc (a + b) - nat_ind[λb. ∀a. Suc a + b = Suc (a + b)] % - tranr1 add0 % - arg_cong % - add0 % ren c a ren d b - tranr1 add_simp2 % - arg_cong % - tranr1 add_simp2 % - 1 % lemma add_com: ∀a b. a + b = b + a - nat_ind[λa. ∀b. a + b = b + a] % - tranr1 add0r % - add0 % ren c a ren d b - com % - tranr1 add_simp2 % - tranr suc_add % - arg_cong 1 % lemma injI: ∀f. (∀a b. f a = f b ⟶ a = b) ⟶ inj f - psubr inj_def1 {2}1 % lemma injE: ∀f a b. inj f ⟶ f a = f b ⟶ a = b - psub inj_def1 1 2 % lemma add_inj1: ∀a b c. a + b = a + c ⟶ b = c - nat_ind[λa. ∀b c. a + b = a + c ⟶ b = c, a, b, c] % del 1 - tran1 add0r 1 - tran1 add0r 1 % del 1 ren d a ren e b ren f c - tran1 suc_add 2 - tran1 suc_add 2 - Suc_inj 2 - 1 2 % - 1 % lemma add_inj: ∀a. inj ((+) a) - injI {2}add_inj1 % lemma add_assoc: ∀a b c. (a + b) + c = a + (b + c) - nat_ind[λc. ∀a b. a + b + c = a + (b + c)] % ren d a ren e b - tranr add0 % - arg_cong % - com add0 % ren d a ren e b ren f c - tranr1 add_simp2 % - subr[λx. b + x = Suc (b + c + a)] add_simp2 % - tranr1 add_simp2 % - arg_cong 1 % lemma lte_add: ∀a b. a <= a + b - nat_ind[λb. ∀a. a <= a + b] % - subr add0 lte_refl % - subr add_simp2 % - lte_lte_suc 1 % lemma uniqE1: ∀P Q. (∃!) P ⟶ (∀a. P a ⟶ (∀b. P b = (b = a)) ⟶ Q) ⟶ Q - psub uniq_def1 1* - conjE1 1+ - conjE2 1 - exiE 2* % - 1+ 2+ % - iffI % - 3 4 2 % sub 4 - 2 % lemma lte_uniq_add: ∀a b. (a <= b) = (∃!c. b = a + c) - iffI % - nat_ind[λa. ∀b. a <= b ⟶ ∃!c. b = a + c] % del 1 del 1 ren c a - uniqI1[a] % - com add0r % sub 1 - iffI % - com 1 - tran add0r 1 % sub 1 - arg_cong % - com add0r % del 1 ren c a ren d b - gte_suc_neq_0 2+ - neq0 3 % sub 3 ren c b - psub lte_suc2 2 - 1 2 - uniqE 1+ - uniqI1[THE c. b = a + c] % - com % - tranr suc_add % - arg_cong % - com 2 % - iffI % - com 4 - tran suc_add 4 - Suc_inj 4 - com 4 sub 4 - uniqE 1+ - add_inj1 4 % - com % - tranr suc_add % - arg_cong % sub 4 - com % - uniqE 1 % - 1 % - uniqE1 1 % sub 1 ren c b - nat_ind[λb. (∀c. (a + b = a + c) = (c = b)) ⟶ a <= a + b] % del 1 - subr add0 lte_refl % del 1 ren c b - subr add_simp2 % - lte_lte_suc lte_add % - 1 % type list 1 const Nil :: list 'a const Cons :: 'a ⟹ list 'a ⟹ list 'a axiom list_dif: ∀a b. ¬(Nil = Cons a b) axiom Cons_inj: ∀a b c d. Cons a b = Cons c d ⟶ a = c ∧ b = d axiom list_ind: ∀P. P Nil ⟶ (∀a b. P b ⟶ P (Cons a b)) ⟶ (∀) P def nul: λa. a = Nil def nnul: λa. ¬(nul a) lemma nul_def1: ∀a. nul a = (a = Nil) - fun_cong nul_def % lemma nnul_def1': ∀a. nnul a = ¬(nul a) - fun_cong nnul_def % lemma nnul_def1: ∀a. nnul a = ¬(a = Nil) - iffI % - fun_cong nnul_def - psub 2 1 - cposr_nn 1 % sub 1 - psubr nul_def1 refl % - fun_cong nnul_def - psubr 2 % - subr nul_def1 1 % lemma nul_simp1: nul Nil = True - eq_truI % - psubr nul_def1 refl % lemma nul_simp2: ∀a b. nul (Cons a b) = False - eq_falI % - notI % - psub nul_def1 1 - com 1 - falI 1 list_dif % lemma nnul_simp1: nnul Nil = False - eq_falI % - subr nnul_def1 % - notI2 refl % lemma nnul_simp2: ∀a b. nnul (Cons a b) = True - eq_truI % - psubr nnul_def1 % - neq_com list_dif % lemma nnul_exi_cons: ∀a. nnul a = (∃b c. a = Cons b c) - list_ind[#..a] % - tranr1 nnul_simp1 % - eq_falI % - notI % - exiE 1 % - exiE 1 % - falI 1 list_dif % - tranr1 nnul_simp2 % - eq_truI % - exiI[b] % - exiI[c] % - refl % lemma nnul_imp_uniq_cons: ∀a. nnul a = (∃!b c. a = Cons b c) - iffI % - psub nnul_exi_cons 1 - exiE 1 % - exiE 1 % sub 1 - uniqI1[b] % - uniqI1[c] % - refl % - iffI % - eq_tran2 1 2 - Cons_inj 1 - conjE2 1 - com 1 % sub 2 - 1 % - iffI % - uniqE 1* - uniqE 2* - eq_tran2 1 2 - Cons_inj 1 - conjE1 1 - com 1 % sub 2 - uniqI1[c] % - refl % del 2 - iffI % - Cons_inj 2 - conjE2 2 - com 2 % sub 2 - refl % - uniqE 1 - uniqE 1 sub 1 - psubr nnul_simp2 true % lemma nul_simp1p: nul Nil - eq_truE % - nul_simp1 % lemma nul_simp2p: ∀a b. ¬(nul (Cons a b)) - eq_falE % - nul_simp2 % lemma nnul_simp1p: ¬(nnul Nil) - eq_falE % - nnul_simp1 % lemma nnul_simp2p: ∀a b. nnul (Cons a b) - eq_truE % - nnul_simp2 % def head: λa. if (nnul a) (THE b. ∃c. a = Cons b c) undefined def tail: λa. if (nnul a) (THE c. ∃b. a = Cons b c) undefined lemma head_def1: ∀a. head a = if (nnul a) (THE b. ∃c. a = Cons b c) undefined - fun_cong head_def % lemma tail_def1: ∀a. tail a = if (nnul a) (THE c. ∃b. a = Cons b c) undefined - fun_cong tail_def % lemma head_simp: ∀a b. head (Cons a b) = a - tranr head_def1 % - if_tru_r1 nnul_simp2p % - theI % - exiI[b] % - refl % - exiE 1 % - Cons_inj 1 - conjE1 1 - com 1 % lemma tail_simp: ∀a b. tail (Cons a b) = b - tranr tail_def1 % - if_tru_r1 nnul_simp2p % - theI % - exiI[a] % - refl % - exiE 1 % - Cons_inj 1 - conjE2 1 - com 1 % def inc: Suc lemma inc_simp: ∀a. inc a = Suc a - fun_cong inc_def % def dec: λa. THE b. a = Suc b lemma dec_simp: ∀a. dec (Suc a) = a - fun_cong dec_def - tranr 1 % - theI % - refl % - Suc_inj 1 - com 1 % def sub: λa b. THE c. a = b + c lemma sub_simps: ∀a b. sub a 0 = a ∧ sub (Suc a) (Suc b) = sub a b - fun_cong2 sub_def - psub lte_uniq_add - theE 1+ - subr[#..sub] sub_def % - conjI % - 2+[0, a] gte_0 - uniqE 4 - com 4 - tran add0r 4 % - arg_cong % - ext % - iffI % - com 4 - tran suc_add 4 - Suc_inj 4 - com 4 % sub 4 - com % - tranr suc_add refl % lemma sub_simp1: ∀a. sub a 0 = a - conjE1 sub_simps % lemma sub_simp2: ∀a b. sub (Suc a) (Suc b) = sub a b - conjE2 sub_simps % def μ [binder]: λP. THE n. P n ∧ (∀k. k < n ⟶ ¬P k) lemma mu_def: ∀P. (μ) P = (THE n. P n ∧ (∀k. k < n ⟶ ¬P k)) - fun_cong μ_def % lemma muI: ∀P n. P n ⟶ (∀k. k < n ⟶ ¬P k) ⟶ (μ) P = n - tranr mu_def % - theI % - conjI % - 1 % - 2 3 % - conjE1 3+ - conjE2 3 - cmp[c, b] % - 2 5 - falE2 2 4 % - 4 5 - falE2 1 4 % - 5 % lemma muE1: ∀Q P n. Q ((μ) P) ⟶ P n ⟶ (∀k. k < n ⟶ ¬P k) ⟶ Q n - imp_swap psubr 1 % - arg_cong % - com % - muI 1 {1}2 % lemma not_lt_0: ∀a. ¬(a < 0) - notI % - gt_neq_0 1 - falI refl 1 % lemma conjE: ∀P Q R. P ∧ Q ⟶ (P ⟶ Q ⟶ R) ⟶ R - conjE1 1+ - conjE2 1 - 1 2 3 % lemma lte_exh: ∀P a b. a <= b ⟶ (a < b ⟶ P) ⟶ (a = b ⟶ P) ⟶ P - psub lte_def 1* - disjE 1 % - 1 3 % - 2 3 % lemma lte_tran: ∀ a b c. a <= b ⟶ b <= c ⟶ a <= c - lte_exh 1 % - lte_exh 1 % - lt_tran 1 2 - lt_imp_lte 1 % sub 2 - lt_imp_lte 1 % sub 2 - 1 % lemma lt_lte_tran: ∀a b c. a < b ⟶ b <= c ⟶ a < c - lte_exh 2 % - lt_tran 1 2 % sub 2 - 1 % lemma lte_lt_tran: ∀a b c. a <= b ⟶ b < c ⟶ a < c - lte_exh 1 % - lt_tran 2 1 % sub 2 - 1 % lemma exi_least: ∀P. (∃) P ⟶ (∃n. P n ∧ (∀k. k < n ⟶ ¬P k)) ren a P - exiE 1 % ren a N - split[∃n. n < N ∧ P n ∧ (∀k. k < n ⟶ ¬P k)] % - exiE 2 % ren a n - conjE2 2*+ - conjE1 2* - conjE2 2*+ - conjE1 2* show [(μn. P n ∧ (∀k. k < n ⟶ ¬P k)) = n] - exiI[n] % - conjI % - 3 % ren a k - 4 6 % - muI % - conjI % - 3 % - 4 5 % ren a k - notI % - conjE1 6 - 4*+ 5 - falE2 6 5 % - dmrg_ne 2 - exiI[N] % - conjI % - 1 % ren a n show [∀n. n < N ⟶ P n ⟶ ∃k. k < n ∧ P k] del 2 - nat_ind_lte[λn. n < N ⟶ ¬P n] % - notI % - 3 4 5 - exiE 3 % del 2 ren a n - conjE 2 % - falI 2 not_lt_0 % del 2 ren a n - notI % - 2+ 4+ 5+ - exiE 6 % ren a k - conjE 6 % - lt_suc_lte 6* - psub lte_suc2 6* - lte_lte_suc 6+ - lte_lt_tran 8 4+ - 3 6 8 - falI 5 6 % - 2 % ren a k - 2*[k] - dmrg_nc 2* - conjI 4 5 - notI2 4 - disjE1 2* 4 - dmrg_nu 2* - imp_swap subr 2 % - ext % - iffI % - conjE 3 % - notI % - 5 3 - falI 3 4 % - cposr_np 3 % - dmrg_nc 3* - disjE 3 % - falE2 3 4 % - 4 % lemma uniq_least: ∀P. (∃) P ⟶ (∃!n. P n ∧ (∀k. k < n ⟶ ¬P k)) - exi_least 1 - exiE 1 % - conjE 1 % ren a P ren b n₀ - uniqI1[n₀] % - conjI % - 1 % ren a n₁ - 2 3 % ren a n₁ - conjE 3 % - iffI % - conjE 5 % - cmp[n₁, n₀] % - 4 7 - falE2 4 6 % - 6 7 - falE2 3 6 % - 7 % sub 5 - conjI % - 3 % - 4 5 % lemma muE: ∀P n. (μ) P = n ⟶ (∃) P ⟶ P n ∧ (∀k. k < n ⟶ ¬P k) ren a P ren b n - uniq_least 2* let N: THE a. P a ∧ (∀b. b < a ⟶ ¬P b) - uniqE 2+ - conjE 4 % - subr 3+ 4* - subr[λx. ∀a. a < x ⟶ ¬P a] 3+ {1}5 show [(μ) P = N] - eq_tran2 1+ 6+ sub 7 - conjI 4 {1}5 % - muI % - 4 % - 5 6 % lemma suc_least_gt: ∀a. (μb. a < b) = Suc a - muI % - lt_suc % - notI % - lt_suc_lte 2 - lte_exh 2 % - lt_gt_fal 1 2 % - lt_imp_neq1 1* - falI 2 1 % lemma nul_not_nnul: ∀a. nul a ⟶ ¬(nnul a) - notI % - psub nnul_exi_cons 2 - exiE 2 % - exiE 2 % sub 2 - falI 1 nul_simp2p % lemma not_nul_nnul: ∀a. ¬(nul a) ⟶ nnul a - list_ind[λa. ¬nul a ⟶ nnul a] % - falE2 nul_simp1p 2 % del 1 - nnul_simp2p % - 1 % lemma sp: ∀P Q R. (P ⟶ Q ⟶ R) ⟶ Q ⟶ P ⟶ R - 1 3 2 % lemma nnul_not_nul: ∀a. nnul a ⟶ ¬(nul a) - cpos_pn nul_not_nnul 1 % lemma not_nnul_nul: ∀a. ¬(nnul a) ⟶ nul a - cpos_np not_nul_nnul 1 % lemma nul_iff_nil: ∀a. nul a = (a = Nil) - list_ind[#..a] % - tranr1 nul_simp1 % - eq_truI refl % - tranr1 nul_simp2 % - eq_falI % - neq_com % - list_dif % lemma nexi_gt_all: ¬∃a. ∀b. b < a - notI % - exiE 1 % - falI 1 not_lt_refl % lemma lt_not_gte: ∀a b. (a < b) = ¬(b <= a) - iffI % - notI % - lte_exh 2 % - lt_gt_fal 1 2 % sub 2 - falI 1 not_lt_refl % - sub lte_def 1 - dmrg_nd 1 - conjE 1 % - cmp[a, b] % - 3 % - falE2 3 1 % sub 3 - falE2 refl 2 % lemma nexi_gte_all: ¬∃a. ∀b. b <= a - notI % - exiE 1 % - nat_inf[a] - exiE 2 % - 1*[b] - psub lt_not_gte 2 - falI 1 2 % const foldr :: 'b ⟹ ('a ⟹ 'b ⟹ 'b) ⟹ list 'a ⟹ 'b axiom foldr_simp1: ∀z f. foldr z f Nil = z axiom foldr_simp2: ∀z f a b. foldr z f (Cons a b) = f a (foldr z f b) def length: foldr 0 (λa b. Suc b) lemma length_def1: ∀a. length a = foldr 0 (λa b. Suc b) a - fun_cong length_def % lemma length_simps: ∀a b. length Nil = 0 ∧ length (Cons a b) = Suc (length b) - conjI % - tranr length_def1 % - tranr foldr_simp1 refl % - tranr length_def1 % - tranr foldr_simp2 % - arg_cong % - com length_def1 % lemma length_simp1: length Nil = 0 - conjE1 length_simps % lemma length_simp2: ∀a b. length (Cons a b) = Suc (length b) - conjE2 length_simps % lemma exi_exi: (∃) (∃) - exiI[univ] % - exiI[undefined] % - psub in_def all_in_univ % lemma etaI: ∀P f. P f ⟶ P (λa. f a) - com eta - arg_cong 2 - psub 2 1 % lemma not_all_all: ¬((∀) (∀)) - notI % - etaI 1 - 1[∅] - etaI 1 - psubr in_def 1 - falI 1 not_in_emp % lemma all_eq_unit: ∀a. a = Unit - unit_ind[#..a] refl % lemma unit_eq_all: ∀a. Unit = a - com all_eq_unit % lemma exi_func_fst_snd: ∃f. ∀a b. f (Pair a b) = a ∧ f (Pair a b) = b - exiI[λx. (λx y. y) (fst x = Unit) Unit] % - conjI unit_eq_all unit_eq_all % spacing (FIX) 0 1 0 def FIX [binder]: λf. THE x. f x = x lemma fix_def: ∀f. (FIX) f = THE x. f x = x - fun_cong FIX_def % def id₁: FIX f. λx. if (x = 0) 0 (Suc (f (pred x))) lemma id₁_eq_id: id₁ = id - tranr id₁_def % - tranr fix_def % - theI % - ext % - com % - tranr1 id_def1 % - if_eq % - com 1 % - psub neq_0_exi_suc 1 - exiE 1 % sub 1 - arg_cong % - tranr id_def1 pred_suc % ren a f - fun_cong 1 - ext % - com % - tranr1 id_def1 % ren a n - nat_ind[#..n] % - if_tru_t1 1 refl - com 1 % ren a n - if_fal_t1 1* suc_neq_0 [n] - sub[λx. Suc (f x) = f (Suc n)] pred_suc 1* - sub[λx. Suc x = f (Suc n)] 2+ 1* - com 1 % def pred₁: λn. if (n = 0) 0 (pred n) lemma pred1_def: ∀n. pred₁ n = if (n = 0) 0 (pred n) - fun_cong pred₁_def % lemma fix_pred₁_eq_0: (FIX) pred₁ = 0 - tranr fix_def % - theI % - tranr pred1_def % - if_tru_t refl % ren a n - notE2 % - psub neq_0_exi_suc 2 - exiE 2 % sub 2 ren a n - tran pred1_def 1 - if_fal_t1 1 suc_neq_0 - eq_tran2 pred_suc 1 - falI 1 neq_suc % lemma set_eq': ∀a b. (∀c. c ∈ a = c ∈ b) ⟶ a = b - ext % - 1[c] - tran1 in_def 1 - tran1 in_def 1 % lemma set_eq: ∀a b. (a = b) = ((∀c. c ∈ a = c ∈ b) ∧ (∀c. a ∈ c = b ∈ c)) - iffI % sub 1 - conjI % - refl % - refl % - conjE1 1 - set_eq' {1}1 % def (⋂) [infixl 55]: λa b c. c ∈ a ∧ c ∈ b def (⋃) [infixl 55]: λa b c. c ∈ a ∨ c ∈ b lemma cap_def: ∀a b. a ⋂ b = λc. c ∈ a ∧ c ∈ b - fun_cong2 ⋂_def % lemma cup_def: ∀a b. a ⋃ b = λc. c ∈ a ∨ c ∈ b - fun_cong2 ⋃_def % lemma lem_z3_5438: ∀x y. (∀Q. x ∈ Q ⟶ y ∈ Q) ⟶ x = y ren a x ren b y - 1[λz. z = x] - psubr in_def - imp_tran 2 1 refl - psub in_def 1 - com 1 % def map: λf. foldr Nil (λx. Cons (f x)) lemma map_def1: ∀f xs. map f xs = foldr Nil (λx. Cons (f x)) xs - fun_cong2 map_def % lemma map_simp1: ∀f. map f Nil = Nil - tranr map_def1 % - tranr foldr_simp1 refl % lemma map_simp2: ∀f x xs. map f (Cons x xs) = Cons (f x) (map f xs) - tranr map_def1 % - tranr foldr_simp2 % - arg_cong % - tran map_def1 refl % lemma fsub: ∀a b c f. a = b ⟶ f a = c ⟶ f b = c sub 1 - 1 % lemma fsubr: ∀a b c f. a = b ⟶ f b = c ⟶ f a = c sub 1 - 1 % lemma fsub1: ∀a b c f. f a = c ⟶ a = b ⟶ f b = c - fsub 2 1 % lemma fsubr1: ∀a b c f. f b = c ⟶ a = b ⟶ f a = c - fsubr 2 1 % lemma map_prsv_len: ∀xs f. length (map f xs) = length xs ren a xs ren b f - list_ind[#..xs] % - arg_cong map_simp1 % - fsubr map_simp2 % - tranr1 length_simp2 % - tranr1 length_simp2 % - arg_cong 1 % def last': λxs. foldr (Pair False undefined) (λx p. if (fst p) p (Pair True x)) xs def last: λxs. snd (last' xs) lemma last'_def1: ∀xs. last' xs = foldr (Pair False undefined) (λx p. if (fst p) p (Pair True x)) xs - fun_cong last'_def % lemma last_last': ∀xs. last xs = snd (last' xs) - fun_cong last_def % lemma last_def1: ∀xs. last xs = snd (foldr (Pair False undefined) (λx p. if (fst p) p (Pair True x)) xs) - tranr last_last' % - arg_cong last'_def1 % lemma if_tru_subr: ∀P a b c. a ⟶ P b ⟶ P (if a b c) - sub1 2 % - com % - if_tru_r1 1 refl % lemma if_fal_subr: ∀P a b c. ¬a ⟶ P c ⟶ P (if a b c) - sub1 2 % - com % - if_fal_r1 1 refl % lemma if_tru_fsubr: ∀a b c d f. a ⟶ f b = d ⟶ f (if a b c) = d - fsub1 2 % - com % - if_tru_r1 1 refl % lemma if_fal_fsubr: ∀a b c d f. ¬a ⟶ f c = d ⟶ f (if a b c) = d - fsub1 2 % - com % - if_fal_r1 1 refl % lemma last'_cons_tru: ∀x xs. fst (last' (Cons x xs)) ren a x ren b xs - list_ind[λxs. ∀x. fst (last' (Cons x xs))] % ren a x - subr last'_def1 % - subr foldr_simp2 % - if_fal_subr % - notI % - sub foldr_simp1 1 - psub fst_simp 1 % - psubr fst_simp true % ren a y ren b ys ren c x - subr last'_def1 % - subr foldr_simp2 % - if_tru_subr % - sub last'_def1 1 % - sub last'_def1 1 % lemma last'_simp1: ∀x. last' (Cons x Nil) = Pair True x ren a x - tranr last'_def1 % - tranr foldr_simp2 % - if_fal_r1 % - notI % - sub foldr_simp1 1 - psub fst_simp 1 % - refl % lemma last'_simp2: ∀x y ys. last' (Cons x (Cons y ys)) = last' (Cons y ys) ren a x ren b y ren c ys - list_ind[λys. ∀x y. last' (Cons x (Cons y ys)) = last' (Cons y ys)] % ren a x ren b y - tranr last'_def1 % - tranr foldr_simp2 % - if_tru_r1 % - subr foldr_simp2 % - if_fal_subr % - notI % - sub foldr_simp1 1 - psub fst_simp 1 % - psubr fst_simp true % - tran last'_def1 refl % ren a z ren b zs ren c x ren d y - tranr last'_def1 % - tranr foldr_simp2 % - if_tru_r1 % - sub last'_def1 last'_cons_tru % - tranr foldr_simp2 % - if_tru_r1 % - sub last'_def1 last'_cons_tru % - tran last'_def1 % - com 1 % lemma last_simp1: ∀x. last (Cons x Nil) = x ren a x - tranr last_def1 % - imp_swap fsubr snd_simp show [∀a. a = Pair True x ⟶ snd a = x] del 1 - 1 % - tranr foldr_simp2 % - if_fal_r1 % - notI % - sub foldr_simp1 1 - psub fst_simp 1 % - refl % sub 2 - snd_simp % lemma last_simp2: ∀x y ys. last (Cons x (Cons y ys)) = last (Cons y ys) ren a x ren b y ren c ys - tranr1 last_last' % - tranr1 last_last' % - arg_cong last'_simp2 % lemma tr1: ∀a₁ b₁ f x y. f a₁ = x ⟶ b₁ = a₁ ⟶ x = y ⟶ f b₁ = y sub 2 - tranr 1 2 % lemma tr2: ∀a₁ a₂ b₁ b₂ f x y. f a₁ a₂ = x ⟶ b₁ = a₁ ⟶ b₂ = a₂ ⟶ x = y ⟶ f b₁ b₂ = y sub 2 sub 2 - tranr 1 2 % lemma tr3: ∀a₁ a₂ a₃ b₁ b₂ b₃ f x y. f a₁ a₂ a₃ = x ⟶ b₁ = a₁ ⟶ b₂ = a₂ ⟶ b₃ = a₃ ⟶ x = y ⟶ f b₁ b₂ b₃ = y sub 2 sub 2 sub 2 - tranr 1 2 % def const: λa b. a lemma const_def1: ∀a b. const a b = a - fun_cong2 const_def % def const_f: λf. ∀x y. f x = f y lemma const_f_def1: ∀f. const_f f = (∀x y. f x = f y) - fun_cong const_f_def % lemma conf_f_const: ∀a. const_f (const a) - psubr const_f_def1 % - tranr1 const_def1 % - tranr1 const_def1 refl % def replicate: λa. nat_fold Nil (Cons a) lemma replicate_def1: ∀a n. replicate a n = nat_fold Nil (Cons a) n - fun_cong2 replicate_def % lemma replicate_simp1: ∀a. replicate a 0 = Nil - tranr replicate_def1 % - nat_fold_simp1 % lemma replicate_simp2: ∀a n. replicate a (Suc n) = Cons a (replicate a n) ren a n ren b a - tranr replicate_def1 % - tranr nat_fold_simp2 % - arg_cong % - com replicate_def1 % lemma len_replicate: ∀a n. length (replicate a n) = n ren b n - nat_ind[#..n] % - tr1 length_simp1 replicate_simp1 refl % - fsubr replicate_simp2 % - tranr length_simp2 % - arg_cong 1 % lemma map_const_f: ∀f. const_f f ⟶ ∃g. ∀xs. map f xs = g (length xs) ren a f - exiI[replicate (f undefined)] % ren a xs - psub const_f_def1 1 let a: f undefined - tranr 2 1 - com 1 - subr[λa. map f xs = replicate a (length xs)] 1+ % - list_ind[#..xs] % - tranr1 map_simp1 % - tr2 replicate_simp1 refl length_simp1 refl % ren b x ren c xs - tranr1 map_simp2 % - subr[λb. replicate a b = Cons (f x) (map f xs)] length_simp2 % - tranr replicate_simp2 % - cong % - com % - arg_cong 1 % - com 2 % lemma foldr_const_f: ∀z f. const_f f ⟶ ∃g. ∀xs. foldr z f xs = g (length xs) ren a z ren b f - exiI[nat_fold z (f undefined)] % ren a xs - psub const_f_def1 1 let a: f undefined - tranr 2 1 - com 1 - subr[λa. foldr z f xs = nat_fold z a (length xs)] 1+ % - list_ind[#..xs] % - tranr1 foldr_simp1 % - tr3 nat_fold_simp1 refl refl length_simp1 refl % ren b x ren c xs - tranr1 foldr_simp2 % - subr[λb. nat_fold z a b = f x (foldr z f xs)] length_simp2 % - tranr nat_fold_simp2 % - cong % - com 1 % - com 2 % lemma eta2: ∀P f. P (λa. f a) ⟶ P f - imp_swap sub 1 % - ext % - refl % lemma list_exh: ∀P. P Nil ⟶ (∀x xs. P (Cons x xs)) ⟶ (∀) P ren a P - eta2 % ren a xs - list_ind[#..xs] % - 1 % - 2 % lemma nat_exh: ∀P. P 0 ⟶ (∀n. P n) ⟶ (∀) P ren a P - eta2 % ren a n - nat_ind[#..n] % - 1 % - 2 % lemma nat_fold_simp_it: ∀z f n. nat_fold z f (Suc n) = nat_fold (f z) f n ren a z ren b f ren c n - nat_ind[λn. ∀z f. nat_fold z f (Suc n) = nat_fold (f z) f n] % ren a z ren b f - tranr nat_fold_simp2 % - fsubr nat_fold_simp1 % - com nat_fold_simp1 % ren a n ren b z ren c f - tranr1 nat_fold_simp2 % - tranr1 nat_fold_simp2 % - arg_cong 1 % lemma nat_fold_replicate_tail: ∀a n. nat_fold (replicate a n) tail n = Nil ren b n - nat_ind[#..n] % - tranr nat_fold_simp1 % - replicate_simp1 % ren b n - subr[λx. nat_fold x tail (Suc n) = Nil] replicate_simp2 % - tranr nat_fold_simp_it % - tr3 1 tail_simp refl refl refl % lemma nat_fold_tail_len: ∀xs. nat_fold xs tail (length xs) = Nil ren a xs - list_ind[#..xs] % - tr3 nat_fold_simp1 refl refl length_simp1 refl % ren a x ren b xs - subr[λa. nat_fold (Cons x xs) tail a = Nil] length_simp2 % - tranr nat_fold_simp_it % - tr3 1 tail_simp refl refl refl % lemma nnul_cons: ∀x xs. nnul (Cons x xs) ren a x ren b xs - eq_truE nnul_simp2 % lemma not_nnul_imp_nul: ∀xs. ¬(nnul xs) ⟶ nul xs ren a xs - sub nnul_def1 1 - notE 1 sub 1 - psubr nul_def1 refl % lemma nat_fold_tail_lt_len: ∀xs n. n < length xs ⟶ nnul (nat_fold xs tail n) ren a xs ren b n - nat_ind[λn. ∀xs. n < length xs ⟶ nnul (nat_fold xs tail n)] % del 1 ren a xs - list_exh[λxs. 0 < length xs ⟶ nnul (nat_fold xs tail 0)] % del 1 - sub[λa. 0 < a] length_simp1 1 - falE2 1 not_lt_refl % del 1 ren a x ren b xs - subr nat_fold_simp1 % - nnul_cons % - 1 % del 1 ren a n ren b xs - subr nat_fold_simp_it % show [∃y ys. xs = Cons y ys] - exiE 3 % - exiE 3 % sub 3 ren a x ren b xs - subr[λa. nnul (nat_fold a tail n)] tail_simp % - sub[λa. Suc n < a] length_simp2 2 - psub lt_simp3 2 - 1 2 % show [nnul xs] - psub nnul_exi_cons 3 % - notE2 % - not_nnul_imp_nul 3 - psub nul_def1 3 sub 3 - sub[λa. Suc n < a] length_simp1 2 - falE2 2 not_lt_0 % - 1 % lemma nnul_imp_neq_nil: ∀xs. nnul xs ⟶ ¬(xs = Nil) ren a xs - psub nnul_def1 1 % lemma length_least_fold_tail: ∀xs. length xs = μn. nat_fold xs tail n = Nil ren a xs - com % - muI % - nat_fold_tail_len % ren a n - nat_fold_tail_lt_len 1 - nnul_imp_neq_nil 1 % def (++) [infixl 55]: λxs ys. foldr ys Cons xs lemma append_def1: ∀xs ys. xs ++ ys = foldr ys Cons xs - fun_cong2 ++_def % lemma map_id: ∀xs. map id xs = xs ren a xs - list_ind[#..xs] % - map_simp1 % ren a x ren b xs - tranr map_simp2 % - tr2 refl id_def1 1 refl % lemma fold_cons: ∀xs. foldr Nil Cons xs = xs ren a xs - list_ind[#..xs] % - foldr_simp1 % ren a x ren b xs - tranr foldr_simp2 % - arg_cong 1 % lemma append_simp1: ∀xs. Nil ++ xs = xs ren a xs - tranr append_def1 % - foldr_simp1 % lemma append_nil: ∀xs. xs ++ Nil = xs ren a xs - tranr append_def1 fold_cons % lemma append_simp2: ∀x xs ys. Cons x xs ++ ys = Cons x (xs ++ ys) ren a x ren b xs ren c ys - tranr append_def1 % - tranr foldr_simp2 % - arg_cong % - com append_def1 % lemma append_len: ∀xs ys. length (xs ++ ys) = length xs + length ys ren a xs ren b ys - list_ind[#..xs] % - fsubr append_simp1 % - com % - tr2 add0r length_simp1 refl refl % ren a x ren b xs - fsubr append_simp2 % - tranr1 length_simp2 % - tr2 suc_add length_simp2 refl % - arg_cong % - com 1 % def reverse: foldr Nil (λx xs. xs ++ Cons x Nil) lemma reverse_def1: ∀xs. reverse xs = foldr Nil (λx xs. xs ++ Cons x Nil) xs - fun_cong reverse_def % lemma reverse_simp1: reverse Nil = Nil - tranr reverse_def1 % - foldr_simp1 % lemma reverse_simp2: ∀x xs. reverse (Cons x xs) = reverse xs ++ Cons x Nil ren a x ren b xs - tranr reverse_def1 % - tranr foldr_simp2 % - com reverse_def1 - tr2 refl 1 refl refl % lemma append_cons: ∀xs y ys. xs ++ (Cons y ys) = xs ++ (Cons y Nil) ++ ys ren a xs ren b y ren c ys - list_ind[#..xs] % - tranr1 append_simp1 % - tr2 append_simp2 append_simp1 refl % - arg_cong append_simp1 % ren a x ren b xs - tranr1 append_simp2 % - tr2 append_simp2 append_simp2 refl % - arg_cong % - com 1 % lemma append_assoc: ∀xs ys zs. xs ++ ys ++ zs = xs ++ (ys ++ zs) ren a xs ren b ys ren c zs - list_ind[#..xs] % - tr2 refl append_simp1 refl % - com % - append_simp1 % ren a x ren b xs - com % - tranr1 append_simp2 % - tr2 append_simp2 append_simp2 refl % - arg_cong 1 % lemma reverse_append: ∀xs ys. reverse (xs ++ ys) = reverse ys ++ reverse xs ren a xs ren b ys - list_ind[#..xs] % - fsubr append_simp1 % - com % - tr2 append_nil refl reverse_simp1 refl % ren a x ren b xs - fsubr append_simp2 % - tranr reverse_simp2 % - tr2 refl 1 refl % - com % - tr2 refl refl reverse_simp2 % - com append_assoc % lemma length_append: ∀xs ys. length (xs ++ ys) = length xs + length ys ren a xs ren b ys - list_ind[#..xs] % - fsubr append_simp1 % - com % - tr2 add0r length_simp1 refl refl % ren a x ren b xs - fsubr append_simp2 % - tranr1 length_simp2 % - tr2 suc_add length_simp2 refl % - arg_cong % - com 1 % lemma length_reverse: ∀xs. length (reverse xs) = length xs ren a xs - list_ind[#..xs] % - tr1 length_simp1 reverse_simp1 % - com length_simp1 % ren a x ren b xs - com % - tranr1 length_simp2 % - fsubr reverse_simp2 % - tranr length_append % - tr2 add_simp2 1 length_simp2 % - arg_cong % - tr2 add_simp1 refl length_simp1 refl % lemma reverse_single: ∀x. reverse (Cons x Nil) = Cons x Nil ren a x - tranr reverse_simp2 % - tr2 append_simp1 reverse_simp1 refl refl % lemma reverse2: ∀xs. reverse (reverse xs) = xs ren a xs - list_ind[#..xs] % - tr1 reverse_simp1 reverse_simp1 refl % ren a x ren b xs - fsubr reverse_simp2 % - tranr reverse_append % - tr2 append_simp2 reverse_single 1 % - arg_cong append_simp1 % def foldl: λz f xs. foldr z (λx xs. f xs x) (reverse xs) lemma foldl_def1: ∀z f xs. foldl z f xs = foldr z (λx xs. f xs x) (reverse xs) - fun_cong2 foldl_def - fun_cong 1 % lemma foldl_simp1: ∀z f. foldl z f Nil = z ren a z ren b f - tranr foldl_def1 % - tr3 foldr_simp1 refl refl reverse_simp1 refl % lemma append_reverse: ∀xs ys. xs ++ ys = reverse (reverse ys ++ reverse xs) - arg_cong[reverse] reverse_append - tran reverse2 1 % lemma append_reverse_single: ∀x xs. reverse xs ++ (Cons x Nil) = reverse (Cons x xs) ren a x ren b xs - com % - tranr reverse_simp2 refl % lemma foldr_append_single: ∀z f x xs. foldr z f (xs ++ Cons x Nil) = foldr (f x z) f xs ren a z ren b f ren c x ren d xs - list_ind[#..xs] % - tr3 foldr_simp2 refl refl append_simp1 % - com % - tranr1 foldr_simp1 % - arg_cong foldr_simp1 % ren a y ren b ys - tr3 foldr_simp2 refl refl append_simp2 % - tr2 refl refl 1 % - com % - tranr foldr_simp2 refl % lemma foldl_simp2: ∀z f x xs. foldl z f (Cons x xs) = foldl (f z x) f xs ren a z ren b f ren c x ren d xs - tranr1 foldl_def1 % - tranr1 foldl_def1 % let g: λa b. f b a - com 1+ - fun_cong2 2+ - tr3 refl refl 2+ refl % - com % - tr3 refl 3 2 refl % - com % del 1 let ys: reverse xs - tr3 refl refl refl reverse_simp2 % - sub[λa. foldr z g (a ++ Cons x Nil) = foldr (g x z) g a] 1 % - foldr_append_single %
Implementation
Implementation - If it's not on the master, check the commit history.