Recs
recsis a esolang created by User: Jan jelo.The whole program is a expression,interpreter evaluate it and print the result. It combines partial recursive function and Lambda calculus,and also some extensions.
Expression
A expression can be
<variable>
<natural number>
<function>
(list <expression> <expression>...)
(<function> <expression> <expression>...)
(let <name> <expression>...<name> <expression> <expression>)
Function
A function can be
(<function> <expression> <expression>...)
<variable>
Z
S
(P <natural number> <natural number>)
(C <function> <function>...)
(R <function> <function>)
(M <function>)
(lam <parameter> <expression>)
(fn <expression>)
+
-
*
/
√
pair
left
right
cons
car
cdr
=
(if <expression> <expression> <expression>...)
Reduce
Partial Recursive Function
Z
Z is zero function.
(Z x y z w...)
will reduce to 0
S
S is successor function.
(S x y z w...)
will reduce to x+1
P
(P m n) is projection function
((P m n)x1 x2...xn...xm)
will reduce to xn
C
C is function compose.
((C f g1 g2...gm)x1 x2...xn)
will reduce to (f (g1 x1...xn) (g2 x1...xn)...(gm x1..xn))
R
R is primitive recursion.
((R h g)x1...x_n-1 0)
will reduce to (h x1...x_n-1)
(base case)
((R h g)x1...x_n-1 xn)
will reduce to (g x1...x_n-1 xn-1 ((R h g)x1...x_n-1 xn-1))
(recursive case)
M
M is minimalization.
((M f)x1...xn)
will reduce to the smallest A that makes (f x1...xn A)
reduce to 0
Lambda
lam
((lam x exp)x1...)
will reduce to the exp
that replace free x
in exp
into x1
.
Other
+ - * / √
(+ x1 x2...)
will reduce to x1
+x2
(- x1 x2...)
will reduce to max(0,x1
-x2
)
(* x1 x2...)
will reduce to x1
*x2
(/ x1 x2...)
will reduce to floor(x1
/x2
)
(√ x1...)
will reduce to floor(sqrt(x1
))
cons car cdr
(cons x (list a b c...)...)
will reduce to (list x a b c...)
(car (list a b c...)...)
will reduce to a
(cdr (list a b c...)...)
will reduce to (list b c...)
pair left right
pair is a pairing function,it encodes two natural numbers into one natural number.
0 1 2 3 ----------- 0|0 3 8 15 1|1 2 7 14 2|4 5 6 13 3|9 10 11 12
(pair l r...)
will reduce to l
^2+r
if l
>=r
(pair l r...)
will reduce to 2*r
+r
^2-l
if l
<r
let K be floor(sqrt(p
)),Q be K^2+K,then
(left p...)
will reduce to K-p
+Q if p
>=Q
(left p...)
will reduce to K if p
<Q
(right p...)
will reduce to p
-K^2 if p
>=Q
(right p...)
will reduce to K if p
<Q
= if
(= x1 x2...)
will reduce to 1
if the value of x1
is equal to the value ofx2
,otherwise it will reduce to 0
(if cond t f...)
will reduce to f
if the value of cond
is equal to (list)
or 0
,otherwise it will reduce to t
let
(let x1 f1 x2 f2...xn fn e)
will reduce to ((lam x1((lam x2(...((lam xn e)fn)...))f2))f1)
fn
((fn exp)x1...xn)
will reduce to the exp
that replace the free #<N>
in exp
into N-th argument in the arguments-list
(((fn((fn #2)3 4))1 2)
will reduce to 4
,not 2
)
Turing Completeness
Because Lambda calculus and partial recursive function are Turing complete,recs is turing complete.
Example
(let omega (lam x(x x)) fix (omega (lam f (lam x (x((f f)x))))) fact (fix (lam fact (lam x (if x (* x(fact(- x 1))) 1)))) map (fix (lam map (fn (if #2 (cons(#1(car #2))(map #1(cdr #2))) (list))))) lst (list 0 1 2 3 4 5 6 7 8 9) (map (C fact S) lst) )
will output (list 1 2 6 24 120 720 5040 40320 362880 3628800)
Interpreter
A interpreter written by Python3(I'm not sure if there are any bugs)
functions = [ 'S', 'Z', 'if', '+', '-', '*', '/', '=', '√', 'left', 'right', 'cons', 'car', 'cdr', 'pair' ] def sqrt(x): res=0;digit=1 while digit<x: digit*=10 while digit>0: while res**2<=x: res+=digit res-=digit digit=digit//10 return res def pair(x,y): if x>=y:return x**2+y return y**2+2*y-x def left(p): k=sqrt(p) q=k**2+k if p>=q:return k-(p-q) return k def right(p): k=sqrt(p) q=k**2+k if p>=q:return k return p-k**2 def pop(l): e=l+[] t=e.pop() if t!='(':return e i=1 while i: t=e.pop() if t=='(':i+=1 if t==')':i-=1 return e def top(l): e=l+[] t=e.pop() if t!='(':return [t] i=1;res=[t] while i: t=e.pop() if t=='(':i+=1 if t==')':i-=1 res.append(t) return res[::-1] def token(string): a=(string .replace('(',' ( ') .replace(')',' ) ') .replace('\\\n','') .replace('\n',' ') ) return list(filter( lambda x:x!='', a.split(' ') ))[::-1] def isNum(x): nums='0123456789' return all(map(lambda x:x in nums,x)) def parse(string): def rec(tokens): last=tokens[-1] if last!='(': if isNum(last):return 'num',int(last) if last in functions:return(last,) return 'symbol',last l=tokens[1:-1] o=top(l);l=pop(l) if o==['lam']: para=top(l)[0];l=pop(l) body=top(l) return 'lam',para,rec(body) if o==['fn']: body=top(l) return 'fn',rec(body) if o==['P']: m=top(l);l=pop(l) n=top(l) return 'P',int(m[0]),int(n[0]) if o==['C']: tmp=[] while l:tmp.append(rec(top(l)));l=pop(l) return 'C',tmp if o==['R']: h=top(l);l=pop(l) g=top(l) return 'R',rec(h),rec(g) if o==['M']: f=top(l) return 'M',rec(f) if o==['Z']: tmp=[] while l:tmp.append(rec(top(l)));l=pop(l) return 'app',('Z',),tmp if o==['let']: tmp=[] while l:tmp.append(rec(top(l)));l=pop(l) [*xs,res]=tmp while xs: arg,para=xs.pop(),xs.pop()[1] res=('app',('lam',para,res),[arg]) return res if o==['list']: tmp=[] while l:tmp.append(rec(top(l)));l=pop(l) return 'list',tmp if o==['if']: cond=top(l);l=pop(l) t=top(l);l=pop(l) f=top(l) return 'app',('if',),[rec(cond), rec(t), rec(f)] if o[0]in{'=','+','-','*','/','cons','pair'}: a=top(l);l=pop(l) b=top(l) return 'app',(o[0],),[rec(a), rec(b)] if o[0]in{'√','car','cdr','left','right'}: a=top(l) return 'app',(o[0],),[rec(a)] tmp=[] while l:tmp.append(rec(top(l)));l=pop(l) return 'app',rec(o),tmp return rec(token(string)) def lam_rewrite(body,para,arg): t=body[0] if t=='symbol': if body[1][0]=='#'and isNum(body[1][1:]):return body if body[1]==para:return arg return body if t=='num':return body if t=='list':return ( 'list',list(map( lambda x:lam_rewrite(x,para,arg), body[1] )) ) if t=='lam': if body[1]==para:return body return ( 'lam',body[1], lam_rewrite(body[2],para,arg) ) if t=='P':return body if t=='C': return ( 'C', list(map( lambda x:lam_rewrite(x,para,arg), body[1] )) ) if t=='app': return ( 'app',lam_rewrite(body[1], para, arg), list(map( lambda x:lam_rewrite(x,para,arg), body[2] ))) return ( body[0], *tuple(map( lambda x:lam_rewrite(x,para,arg), body[1:])) ) def fn_rewrite(body,args): t=body[0] if t=='num':return body if t=='list':return ( 'list',list(map( lambda x:fn_rewrite(x,args), body[1] )) ) if t=='symbol': if body[1][0]=='#'and isNum(body[1][1:]): return val(args[int(body[1][1:])-1]) return body if t in['fn','P']:return body if t=='app': return ( 'app',fn_rewrite(body[1],args), list(map( lambda x:fn_rewrite(x,args), body[2] ))) if t=='lam':return ( 'lam',body[1], fn_rewrite(body[2],args) ) return ( body[0], *tuple(map( lambda x: fn_rewrite(x,args), body[1:])) ) def app(f,x): t=f[0] if t=='S':return 'num',val(x[0])[1]+1 if t=='Z':return 'num',0 if t=='if': if val(x[0])[1]: return val(x[1]) return val(x[2]) if t=='=':return ( 'num', int(val(x[0])[1]==val(x[1])[1]) ) if t=='+':return ( 'num', val(x[0])[1]+val(x[1])[1] ) if t=='-':return ( 'num', max(0,val(x[0])[1]-val(x[1])[1]) ) if t=='*':return ( 'num', val(x[0])[1]*val(x[1])[1] ) if t=='/':return ( 'num', val(x[0])[1]//val(x[1])[1] ) if t=='cons':return ( 'list', [val(x[0])]+val(x[1])[1] ) if t=='pair':return ( 'num', pair(val(x[0])[1],val(x[1])[1]) ) if t=='√':return ( 'num', sqrt(val(x[0])[1]) ) if t=='left':return ( 'num', left(val(x[0])[1]) ) if t=='right':return ( 'num', right(val(x[0])[1]) ) if t=='car':return val(x[0])[1][0] if t=='cdr': l=val(x[0])[1] if l:return 'list',l[1:] return 'list',l if t=='lam': return val(lam_rewrite(f[2],f[1],x[0])) if t=='fn': return val(fn_rewrite(f[1],x)) if t=='P': return x[:f[1]][f[2]-1] if t=='C': fn=f[1][0] gs=f[1][1:] return app( fn, [app(g,x)for g in gs] ) if t=='R': h=f[1];g=f[2] res=app(h,x[:-1]) for i in range(x[-1][1]): res=app(g,x[:-1]+[('num',i)]+[res]) return res if t=='M': fn=f[1];cnt=0 while True: value=app(fn,x+[('num',cnt)]) if value[1]==0:return 'num',cnt cnt+=1 if t=='app': return app(val(f),x) return 'app',f,x def val(exp): t=exp[0] if t=='app': return app(exp[1],(exp[2])) if t=='list': return 'list',list(map(val,exp[1])) return exp def show(exp): t=exp[0] if t in functions:return t if t=='symbol':return exp[1] if t=='num':return str(exp[1]) if t=='list':return f'(list {" ".join(map(show,exp[1]))})' if t=='app':return f'({show(exp[1])} {" ".join(map(show,exp[2]))})' if t=='P':return f'(P {exp[1]} {exp[2]})' if t=='C':return ( '(C '+(' '.join(map(show,exp[1])))+')' ) if t=='lam': return f'(lam {exp[1]} {show(exp[2])})' return f'({t} {" ".join(map(show,exp[1:]))})' exp=''' (let omega (lam x(x x)) fix (omega (lam f (lam x (x((f f)x))))) fact (fix (lam fact (lam x (if x (* x(fact(- x 1))) 1)))) map (fix (lam map (fn (if #2 (cons(#1(car #2))(map #1(cdr #2))) (list))))) lst (list 0 1 2 3 4 5 6 7 8 9) (map (C fact S) lst) ) ''' print(show(val(parse(exp))))